Suppr超能文献

基于向量李雅普诺夫函数的具有马尔可夫切换的时滞递归神经网络的时刻指数输入到状态稳定性

th Moment Exponential Input-to-State Stability of Delayed Recurrent Neural Networks With Markovian Switching via Vector Lyapunov Function.

作者信息

Liu Lei, Cao Jinde, Qian Cheng

出版信息

IEEE Trans Neural Netw Learn Syst. 2018 Jul;29(7):3152-3163. doi: 10.1109/TNNLS.2017.2713824. Epub 2017 Jul 6.

Abstract

In this paper, the th moment input-to-state exponential stability for delayed recurrent neural networks (DRNNs) with Markovian switching is studied. By using stochastic analysis techniques and classical Razumikhin techniques, a generalized vector -operator differential inequality including cross item is obtained. Without additional restrictive conditions on the time-varying delay, the sufficient criteria on the th moment input-to-state exponential stability for DRNNs with Markovian switching are derived by means of the vector -operator differential inequality. When the input is zero, an improved criterion on exponential stability is obtained. Two numerical examples are provided to examine the correctness of the derived results.

摘要

本文研究了具有马尔可夫切换的时滞递归神经网络(DRNNs)的第(t)时刻输入到状态指数稳定性。通过使用随机分析技术和经典的拉祖米欣技术,得到了一个包含交叉项的广义向量算子微分不等式。在对时变延迟没有额外限制条件的情况下,借助向量算子微分不等式推导了具有马尔可夫切换的DRNNs的第(t)时刻输入到状态指数稳定性的充分判据。当输入为零时,得到了指数稳定性的一个改进判据。给出了两个数值例子来检验所得结果的正确性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验