Liu Lei, Cao Jinde, Qian Cheng
IEEE Trans Neural Netw Learn Syst. 2018 Jul;29(7):3152-3163. doi: 10.1109/TNNLS.2017.2713824. Epub 2017 Jul 6.
In this paper, the th moment input-to-state exponential stability for delayed recurrent neural networks (DRNNs) with Markovian switching is studied. By using stochastic analysis techniques and classical Razumikhin techniques, a generalized vector -operator differential inequality including cross item is obtained. Without additional restrictive conditions on the time-varying delay, the sufficient criteria on the th moment input-to-state exponential stability for DRNNs with Markovian switching are derived by means of the vector -operator differential inequality. When the input is zero, an improved criterion on exponential stability is obtained. Two numerical examples are provided to examine the correctness of the derived results.
本文研究了具有马尔可夫切换的时滞递归神经网络(DRNNs)的第(t)时刻输入到状态指数稳定性。通过使用随机分析技术和经典的拉祖米欣技术,得到了一个包含交叉项的广义向量算子微分不等式。在对时变延迟没有额外限制条件的情况下,借助向量算子微分不等式推导了具有马尔可夫切换的DRNNs的第(t)时刻输入到状态指数稳定性的充分判据。当输入为零时,得到了指数稳定性的一个改进判据。给出了两个数值例子来检验所得结果的正确性。