Mann Nishan, Hughes Stephen
Department of Physics, Engineering Physics and Astronomy, Queen's University, Kingston, Ontario K7L 3N6, Canada.
Phys Rev Lett. 2017 Jun 23;118(25):253901. doi: 10.1103/PhysRevLett.118.253901. Epub 2017 Jun 22.
We introduce a new coupled mode theory to model nonlinear Schrödinger equations for counterpropagating Bloch modes that include disorder-induced multiple scattering effects on nonlinear soliton propagation in photonic crystal waveguides. We also derive subunit-cell coupling coefficients and use these to introduce a generalized length scale associated with each coupling effect. In particular, we define a multiple-scattering length scale that quantifies the spatial extent of a disorder-induced cavity mode. Our numerical simulations of nonlinear pulse propagation are in excellent qualitative agreement with recent experiments and provide insight into how structural disorder inhibits soliton propagation and other nonlinear propagation effects in photonic crystal waveguides.
我们引入一种新的耦合模理论,以对反向传播的布洛赫模的非线性薛定谔方程进行建模,该方程包括无序诱导的多重散射效应,这些效应会影响光子晶体波导中非线性孤子的传播。我们还推导了亚单元胞耦合系数,并使用这些系数引入与每种耦合效应相关的广义长度尺度。特别是,我们定义了一个多重散射长度尺度,该尺度量化了无序诱导的腔模的空间范围。我们对非线性脉冲传播的数值模拟与最近的实验在定性上非常吻合,并深入了解了结构无序如何抑制光子晶体波导中的孤子传播和其他非线性传播效应。