Suppr超能文献

检测锆基金属有机框架中与低频太赫兹振动互补的分子旋转动力学

Detecting Molecular Rotational Dynamics Complementing the Low-Frequency Terahertz Vibrations in a Zirconium-Based Metal-Organic Framework.

作者信息

Ryder Matthew R, Van de Voorde Ben, Civalleri Bartolomeo, Bennett Thomas D, Mukhopadhyay Sanghamitra, Cinque Gianfelice, Fernandez-Alonso Felix, De Vos Dirk, Rudić Svemir, Tan Jin-Chong

机构信息

Multifunctional Materials & Composites (MMC) Laboratory, Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, United Kingdom.

ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX, United Kingdom.

出版信息

Phys Rev Lett. 2017 Jun 23;118(25):255502. doi: 10.1103/PhysRevLett.118.255502. Epub 2017 Jun 20.

Abstract

We show clear experimental evidence of cooperative terahertz (THz) dynamics observed below 3 THz (∼100  cm^{-1}), for a low-symmetry Zr-based metal-organic framework structure, termed MIL-140A [ZrO(O_{2}C-C_{6}H_{4}-CO_{2})]. Utilizing a combination of high-resolution inelastic neutron scattering and synchrotron radiation far-infrared spectroscopy, we measured low-energy vibrations originating from the hindered rotations of organic linkers, whose energy barriers and detailed dynamics have been elucidated via ab initio density functional theory calculations. The complex pore architecture caused by the THz rotations has been characterized. We discovered an array of soft modes with trampolinelike motions, which could potentially be the source of anomalous mechanical phenomena such as negative thermal expansion. Our results demonstrate coordinated shear dynamics (2.47 THz), a mechanism which we have shown to destabilize the framework structure, in the exact crystallographic direction of the minimum shear modulus (G_{min}).

摘要

对于一种低对称性的锆基金属有机骨架结构,即MIL-140A [ZrO(O₂C-C₆H₄-CO₂)],我们展示了在3太赫兹(THz)(约100厘米⁻¹)以下观察到的太赫兹(THz)协同动力学的明确实验证据。利用高分辨率非弹性中子散射和同步辐射远红外光谱的组合,我们测量了源自有机连接体受阻旋转的低能振动,其能垒和详细动力学已通过从头算密度泛函理论计算得到阐明。由太赫兹旋转引起的复杂孔结构已得到表征。我们发现了一系列具有类似蹦床运动的软模,这可能是诸如负热膨胀等异常力学现象的来源。我们的结果表明了协同剪切动力学(2.47太赫兹),我们已证明该机制会使框架结构不稳定,且其方向恰好是最小剪切模量(Gmin)的精确晶体学方向。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验