Suppr超能文献

悲伤的人在表情识别上比快乐的人更准确,且自身种族偏见更小。

Sad people are more accurate at expression identification with a smaller own-ethnicity bias than happy people.

作者信息

Hills Peter J, Hill Dominic M

机构信息

1 Department of Psychology, Bournemouth University, Poole, UK.

2 Department of Psychology, Anglia Ruskin University, Cambridge, UK.

出版信息

Q J Exp Psychol (Hove). 2018 Aug;71(8):1797-1806. doi: 10.1080/17470218.2017.1350869. Epub 2018 Jan 1.

Abstract

Sad individuals are more accurate at face identity recognition, possibly because they scan more of the face during encoding. During expression identification tasks, sad individuals do not fixate on the eyes as much as happier individuals. Fixating on features other than the eyes leads to a reduced own-ethnicity bias. This background indicates that sad individuals would not view the eyes as much as happy individuals, and this would result in improved expression recognition and reduced own-ethnicity bias. This prediction was tested using an expression identification task with eye tracking. We demonstrate that sad-induced participants show enhanced expression recognition and a reduced own-ethnicity bias than happy-induced participants due to scanning more facial features. We conclude that mood affects eye movements and face encoding by causing a wider sampling strategy and deeper encoding of facial features diagnostic for expression identification.

摘要

悲伤的个体在面部身份识别方面更准确,这可能是因为他们在编码过程中扫描了更多的面部区域。在表情识别任务中,悲伤的个体不像快乐的个体那样频繁地注视眼睛。注视眼睛以外的特征会导致本族裔偏见的减少。这一背景表明,悲伤的个体不像快乐的个体那样频繁地注视眼睛,这将导致表情识别能力的提高和本族裔偏见的减少。我们使用带有眼动追踪的表情识别任务对这一预测进行了测试。我们证明,与快乐的个体相比,悲伤诱导组的参与者由于扫描了更多的面部特征,因而表现出更强的表情识别能力和更低的本族裔偏见。我们得出结论,情绪通过导致更广泛的采样策略和对表情识别具有诊断性的面部特征进行更深入的编码,从而影响眼动和面部编码。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验