Suppr超能文献

脑膜炎奈瑟菌Vsr核酸内切酶的特性分析

Characterization of Vsr endonucleases from Neisseria meningitidis.

作者信息

Bażlekowa Milena, Adamczyk-Popławska Monika, Kwiatek Agnieszka

机构信息

Department of Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland.

出版信息

Microbiology (Reading). 2017 Jul;163(7):1003-1015. doi: 10.1099/mic.0.000492. Epub 2017 Jul 21.

Abstract

DNA methylation is a common modification occurring in all living organisms. 5-methylcytosine, which is produced in a reaction catalysed by C5-methyltransferases, can spontaneously undergo deamination to thymine, leading to the formation of T:G mismatches and C→T transitions. In Escherichia coli K-12, such mismatches are corrected by the Very Short Patch (VSP) repair system, with Vsr endonuclease as the key enzyme. Neisseria meningitidis possesses genes that encode DNA methyltransferases, including C5-methyltransferases. We report on the mutagenic potential of the meningococcal C5-methyltransferases M.NmeDI and M.NmeAI resulting from deamination of 5-methylcytosine. N. meningitidis strains also possess genes encoding potential Vsr endonucleases. Phylogenetic analysis of meningococcal Vsr endonucleases indicates that they belong to two phylogenetically distinct groups (type I or type II Vsr endonucleases). N. meningitidis serogroup C (FAM18) is a representative of meningococcal strains that carry two Vsr endonuclease genes (V.Nme18IIP and V.Nme18VIP). The V.Nme18VIP (type II) endonuclease cut DNA containing T:G mismatches in all tested nucleotide contexts. V.Nme18IIP (type I) is not active in vitro, but the change of Tyr69 to His69 in the amino acid sequence of the protein restores its endonucleolytic activity. The presence of tyrosine in position 69 is a characteristic feature of type I meningococcal Vsr proteins, while type II Vsr endonucleases possess His69. In addition to the T:G mismatches, V.Nme18VIP and V.Nme18IIPY69H recognize and digest DNA with T:T or U:G mispairs. Thus, for the first time, we demonstrate that the VSP repair system may have a wider significance and broader substrate specificity than DNA lesions that only result from 5-methylcytosine deamination.

摘要

DNA甲基化是所有生物中普遍存在的一种修饰。5-甲基胞嘧啶由C5-甲基转移酶催化反应产生,可自发脱氨形成胸腺嘧啶,导致T:G错配和C→T转换。在大肠杆菌K-12中,这种错配由极短补丁(VSP)修复系统校正,Vsr内切核酸酶是关键酶。脑膜炎奈瑟菌拥有编码DNA甲基转移酶的基因,包括C5-甲基转移酶。我们报道了5-甲基胞嘧啶脱氨导致的脑膜炎球菌C5-甲基转移酶M.NmeDI和M.NmeAI的诱变潜力。脑膜炎奈瑟菌菌株还拥有编码潜在Vsr内切核酸酶的基因。对脑膜炎球菌Vsr内切核酸酶的系统发育分析表明,它们属于两个系统发育上不同的组(I型或II型Vsr内切核酸酶)。脑膜炎奈瑟菌C群(FAM18)是携带两个Vsr内切核酸酶基因(V.Nme18IIP和V.Nme18VIP)的脑膜炎球菌菌株的代表。V.Nme18VIP(II型)内切核酸酶在所有测试的核苷酸背景下切割含有T:G错配的DNA。V.Nme18IIP(I型)在体外无活性,但蛋白质氨基酸序列中Tyr69突变为His69可恢复其内切核酸酶活性。69位酪氨酸的存在是I型脑膜炎球菌Vsr蛋白的特征,而II型Vsr内切核酸酶具有His69。除了T:G错配外,V.Nme18VIP和V.Nme18IIPY69H还识别并消化含有T:T或U:G错配的DNA。因此,我们首次证明VSP修复系统可能比仅由5-甲基胞嘧啶脱氨导致的DNA损伤具有更广泛的意义和更广泛的底物特异性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验