Guhathakurta Piyali, Prochniewicz Ewa, Roopnarine Osha, Rohde John A, Thomas David D
Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota.
Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota.
Biophys J. 2017 Jul 11;113(1):91-100. doi: 10.1016/j.bpj.2017.05.027.
We have used site-directed time-resolved fluorescence resonance energy transfer to determine the effect of a pathological mutation in the human ventricular essential light chain (hVELC) of myosin, on the structural dynamics of the actin-myosin complex. The hVELC modulates the function of actomyosin, through the interaction of its N-terminal extension with actin and its C-terminal lobe with the myosin heavy chain. Several mutations in hVELC are associated with hypertrophic cardiomyopathy (HCM). Some biochemical effects of these mutations are known, but further insight is needed about their effects on the structural dynamics of functioning actomyosin. Therefore, we introduced the HCM mutation E56G into a single-cysteine (C16) hVELC construct and substituted it for the VELC of bovine cardiac myosin subfragment 1. Using a donor fluorescent probe on actin (at C374) and an acceptor probe on C16 of hVELC, we performed time-resolved fluorescence resonance energy transfer, directly detecting structural changes within the bound actomyosin complex during function. The E56G mutation has no significant effect on actin-activated ATPase activity or actomyosin affinity in the presence of ATP, or on the structure of the strong-binding S complex in the absence of ATP. However, in the presence of saturating ATP, where both W (prepowerstroke) and S (postpowerstroke) structural states are observed, the mutant increases the mole fraction of the S complex (increasing the duty ratio), while shifting the structure of the remaining W complex toward that of S, indicating a structural redistribution toward the strongly bound (force-generating) complex. We propose that this effect is responsible for the hypercontractile phenotype induced by this HCM mutation in myosin.
我们利用定点时间分辨荧光共振能量转移技术,来确定肌球蛋白的人心室必需轻链(hVELC)中的病理性突变对肌动蛋白-肌球蛋白复合物结构动力学的影响。hVELC通过其N端延伸与肌动蛋白的相互作用以及其C端叶与肌球蛋白重链的相互作用来调节肌动球蛋白的功能。hVELC中的几种突变与肥厚型心肌病(HCM)相关。这些突变的一些生化效应是已知的,但需要进一步深入了解它们对功能性肌动球蛋白结构动力学的影响。因此,我们将HCM突变E56G引入到单半胱氨酸(C16)hVELC构建体中,并将其替换为牛心肌肌球蛋白亚片段1的VELC。使用肌动蛋白上的供体荧光探针(位于C374)和hVELC的C16上的受体探针,我们进行了时间分辨荧光共振能量转移,直接检测功能过程中结合的肌动球蛋白复合物内的结构变化。E56G突变对ATP存在时的肌动蛋白激活的ATP酶活性或肌动球蛋白亲和力,以及ATP不存在时的强结合S复合物的结构没有显著影响。然而,在存在饱和ATP的情况下,观察到W(动力冲程前)和S(动力冲程后)结构状态,突变体增加了S复合物的摩尔分数(增加了占空比),同时将剩余W复合物的结构向S复合物的结构转变,表明结构重新分布向强结合(产生力)的复合物。我们认为这种效应是由肌球蛋白中的这种HCM突变诱导的超收缩表型的原因。