Nixima Ken'ichi, Okanoya Kazuo, Ichinohe Noritaka, Kurotani Tohru
Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo, Japan.
ERATO Okanoya Emotional Information Project, Japan Science and Technology Agency, Hirosawa, Wako, Saitama, Japan.
J Neurophysiol. 2017 Sep 1;118(3):1784-1799. doi: 10.1152/jn.00734.2016. Epub 2017 Jul 12.
Rodent granular retrosplenial cortex (GRS) has dense connections between the anterior thalamic nuclei (ATN) and hippocampal formation. GRS superficial pyramidal neurons exhibit distinctive late spiking (LS) firing property and form patchy clusters with prominent apical dendritic bundles. The aim of this study was to investigate spatiotemporal dynamics of signal transduction in the GRS induced by ATN afferent stimulation by using fast voltage-sensitive dye imaging in rat brain slices. In coronal slices, layer 1a stimulation, which presumably activated thalamic fibers, evoked propagation of excitatory synaptic signals from layers 2-4 to layers 5-6 in a direction perpendicular to the layer axis, followed by transverse signal propagation within each layer. In the presence of ionotropic glutamate receptor antagonists, inhibitory responses were observed in superficial layers, induced by direct activation of inhibitory interneurons in layer 1. In horizontal slices, excitatory signals in deep layers propagated transversely mainly from posterior to anterior via superficial layers. Cortical inhibitory responses upon layer 1a stimulation in horizontal slices were weaker than those in the coronal slices. Observed differences between coronal and horizontal planes suggest anisotropy of the intracortical circuitry. In conclusion, ATN inputs are processed differently in coronal and horizontal planes of the GRS and then conveyed to other cortical areas. In both planes, GRS superficial layers play an important role in signal propagation, which suggests that superficial neuronal cascade is crucial in the integration of multiple information sources. Superficial neurons in the rat granular retrosplenial cortex (GRS) show distinctive late-spiking (LS) firing property. However, little is known about spatiotemporal dynamics of signal transduction in the GRS. We demonstrated LS neuron network relaying thalamic inputs to deep layers and anisotropic distribution of inhibition between coronal and horizontal planes. Since deep layers of the GRS receive inputs from the subiculum, GRS circuits may work as an integrator of multiple sources such as sensory and memory information.
啮齿动物颗粒状 retrosplenial 皮质(GRS)在前丘脑核(ATN)和海马结构之间有密集的连接。GRS 浅层锥体神经元表现出独特的晚期放电(LS)特性,并形成具有突出顶树突束的斑块状簇。本研究的目的是通过在大鼠脑片中使用快速电压敏感染料成像来研究 ATN 传入刺激诱导的 GRS 中信号转导的时空动态。在冠状切片中,推测激活丘脑纤维的 1a 层刺激在垂直于层轴的方向上诱发兴奋性突触信号从 2 - 4 层传播到 5 - 6 层,随后在每层内横向传播信号。在离子型谷氨酸受体拮抗剂存在的情况下,在浅层观察到抑制反应,这是由 1 层抑制性中间神经元的直接激活诱导的。在水平切片中,深层的兴奋性信号主要通过浅层从后向前横向传播。水平切片中 1a 层刺激后的皮质抑制反应比冠状切片中的弱。冠状面和水平面之间观察到的差异表明皮质内电路的各向异性。总之,ATN 输入在 GRS 的冠状面和水平面中处理方式不同,然后传递到其他皮质区域。在两个平面中,GRS 浅层在信号传播中起重要作用,这表明浅层神经元级联在多个信息源的整合中至关重要。大鼠颗粒状 retrosplenial 皮质(GRS)中的浅层神经元表现出独特的晚期放电(LS)特性。然而,关于 GRS 中信号转导的时空动态知之甚少。我们证明了 LS 神经元网络将丘脑输入中继到深层,以及冠状面和水平面之间抑制的各向异性分布。由于 GRS 的深层接收来自下托的输入,GRS 回路可能作为感觉和记忆信息等多个来源的整合器发挥作用。