Chatelain G, Clavé G, Saint-Pierre C, Gasparutto D, Campidelli S
LICSEN, NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay, F-91191 Gif-sur-Yvette Cedex, France.
Université Grenoble Alpes, INAC-SyMMES/UMR 5819 CEA-CNRS-UGA, CEA-Grenoble, F-38000 Grenoble, France.
Org Biomol Chem. 2017 Aug 7;15(29):6257-6263. doi: 10.1039/c7ob01267e. Epub 2017 Jul 12.
The main aim of nanotechnology is to create functional systems by controlling the matter at the nanometer level. In this context DNA is a versatile building block for the fabrication of micrometer-scale objects with a subnanometer-scale resolution. Over the last 15 years, DNA nanotechnology has considerably developed with the invention of DNA origami, double crossover structures and molecule/oligonucleotide hybrids. Our interest is focused on the combination of short complementary DNA sequences with organic molecules with a view to create large self-assembled nanostructures. Here we report on the synthesis of porphyrin derivatives bearing up to four 21-mer oligonucleotides and we demonstrate that the combination of the molecular hybrids containing complementary DNA strands leads to the formation of large nanostructures with micrometer-scale size.
纳米技术的主要目标是通过在纳米尺度上控制物质来创建功能系统。在这种背景下,DNA是用于制造具有亚纳米级分辨率的微米级物体的通用构建模块。在过去的15年中,随着DNA折纸术、双交叉结构和分子/寡核苷酸杂交体的发明,DNA纳米技术有了长足的发展。我们的兴趣集中在短互补DNA序列与有机分子的结合上,以期创建大型自组装纳米结构。在此,我们报告了带有多达四个21聚体寡核苷酸的卟啉衍生物的合成,并证明含有互补DNA链的分子杂交体的结合导致形成微米级尺寸的大型纳米结构。