Department of Plant Biology, Cornell University, Ithaca, NY, USA.
Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY, USA.
Plant Biotechnol J. 2018 Feb;16(2):482-494. doi: 10.1111/pbi.12789. Epub 2017 Sep 11.
The regulation of plant carotenogenesis is an active research area for both biological discovery and practical implementation. In tomato (Solanum lycopersicum), we demonstrate additional bottlenecks exist in the poly-cis-transformation of phytoene to lycopene in the context of ripening-induced PSY1 expression and activity and reveal phytoene desaturase (PDS), as a target for manipulation towards elevated lycopene content in maturing tomato fruit. Overexpression of Arabidopsis PDS, AtPDS, elevated PDS transcript abundance in all aerial tissues resulting in both altered carotenoid accumulation and associated pathway gene expression in a tissue-specific manner. Significant increases in downstream carotenoids (all-trans-lycopene and β-carotene) and minimal changes in carotenogenic gene expression (carotenoid isomerase-like 1, CRTIL1) suggest overexpression of heterologous AtPDS in tomato circumvents endogenous regulatory mechanism observed with previous strategies. In transgenic leaves, depletion of the PDS substrate, phytoene, was accompanied by minor, but significant increases in xanthophyll production. Alterations in the leaf carotenogenic transcript profile, including the upstream MEP pathway, were observed revealing unique feedback and feedforward regulatory mechanisms in response to AtPDS overexpression. AtPDS overexpression in the background of the tangerine (carotenoid isomerase, CRTISO) mutant exposes its potential in elevating downstream cis-lycopene accumulation in ripe tomato fruit, as cis-lycopene is more bioavailable yet less abundant than all-trans-lycopene in the wild-type control. In summary, we demonstrate the limitation of PDS in ripening fruit, its utility in modifying carotenoid profiles towards improved quality, and reveal novel carotenoid pathway feedback regulation.
植物类胡萝卜素生物合成的调控是生物学发现和实际应用的一个活跃研究领域。在番茄(Solanum lycopersicum)中,我们在 PSY1 表达和活性诱导成熟的情况下,证明了多顺反式-phytoene 向 lycopene 的转化中存在其他瓶颈,并揭示了 phytoene desaturase(PDS)是一种可以操纵的目标,可提高成熟番茄果实中的 lycopene 含量。拟南芥 PDS 的过表达,AtPDS,导致所有气生组织中的 PDS 转录物丰度增加,从而以组织特异性的方式改变类胡萝卜素的积累和相关途径基因的表达。下游类胡萝卜素(全反式-lycopene 和 β-胡萝卜素)显著增加,而与类胡萝卜素异构酶样 1(CRTIL1)相关的基因表达变化最小,表明在番茄中过表达异源 AtPDS 可以规避先前策略中观察到的内源性调节机制。在转基因叶片中,PDS 底物 phytoene 的耗尽伴随着叶黄素产生的轻微但显著增加。叶片类胡萝卜素生物合成转录谱的改变,包括上游 MEP 途径,表明在 AtPDS 过表达时,存在独特的反馈和前馈调节机制。在柑橘(类胡萝卜素异构酶,CRTISO)突变体的背景下过表达 AtPDS,暴露了其在提高成熟番茄果实中下游 cis-lycopene 积累方面的潜力,因为 cis-lycopene 在野生型对照中比全反式-lycopene 更具生物利用度但含量较低。总之,我们证明了 PDS 在成熟果实中的局限性、其在改善品质方面修饰类胡萝卜素图谱的用途,并揭示了新的类胡萝卜素途径反馈调节。