Department of Chemistry and Biochemistry, University of California , Santa Cruz, California 95064, United States.
J Phys Chem B. 2017 Jul 27;121(29):7064-7074. doi: 10.1021/acs.jpcb.7b04107. Epub 2017 Jul 13.
The distribution of viscosities in living cells is heterogeneous because of the different sizes and natures of macromolecular components. When thinking about protein folding/function processes in such an environment, the relevant (micro)viscosity at the micrometer length scale is necessarily distinguished from the bulk (macro)viscosity. The concentration dependencies of microviscosities are determined by a number of factors, such as electrostatic interactions, van der Waals forces, and excluded volume effects. To explore such factors, the rotational diffusion time of myoglobin in the presence of varying concentrations of macromolecules that differ in molecular weight (dextran 6000, 10 000, and 70 000), shape (dextran versus Ficoll), size, and surface charge is measured with time-resolved linear dichroism spectroscopy. The results of these studies offer simple empirically determined linear and exponential functions useful for predicting microviscosities as a function of concentration for these macromolecular crowders that are typically used to study crowding effects on protein folding. To understand how relevant these microviscosity measurements are to intracellular environments, the TRLD results are discussed in the context of studies that measure viscosity in cells.
由于生物大分子的大小和性质不同,活细胞中的黏度分布是不均匀的。在考虑此类环境中的蛋白质折叠/功能过程时,必须区分相关的(微)黏度和整体(宏)黏度。微黏度的浓度依赖性由多种因素决定,例如静电相互作用、范德华力和排斥体积效应。为了探索这些因素,使用时间分辨线性二色性光谱法测量了肌红蛋白在不同浓度的大分子(分子量分别为 6000、10000 和 70000 的葡聚糖、葡聚糖与 Ficoll、形状、大小和表面电荷)存在下的旋转扩散时间。这些研究的结果提供了简单的经验确定的线性和指数函数,可用于预测这些大分子拥挤剂的浓度作为微黏度的函数,这些拥挤剂通常用于研究拥挤效应对蛋白质折叠的影响。为了了解这些微观黏度测量结果与细胞内环境的相关性,在讨论 TRLD 结果时,参考了测量细胞黏度的研究。