Suppr超能文献

通过反位缺陷和嵌入的β相来调节α-LiMnFePO 纳米晶体中的锂离子扩散,用于先进的锂离子电池。

Tuning Li-Ion Diffusion in α-LiMnFePO Nanocrystals by Antisite Defects and Embedded β-Phase for Advanced Li-Ion Batteries.

机构信息

School of Advanced Materials, Peking University, Shenzhen Graduate School , Shenzhen 518055, People's Republic of China.

Jülich Centre for Neutron Science and Peter Grünberg Institut, JARA-FIT , Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.

出版信息

Nano Lett. 2017 Aug 9;17(8):4934-4940. doi: 10.1021/acs.nanolett.7b01978. Epub 2017 Jul 17.

Abstract

Olivine-structured LiMnFePO has become a promising candidate for cathode materials owing to its higher working voltage of 4.1 V and thus larger energy density than that of LiFePO, which has been used for electric vehicles batteries with the advantage of high safety but disadvantage of low energy density due to its lower working voltage of 3.4 V. One drawback of LiMnFePO electrode is its relatively low electronic and Li-ionic conductivity with Li-ion one-dimensional diffusion. Herein, olivine-structured α-LiMnFePO nanocrystals were synthesized with optimized Li-ion diffusion channels in LiMnFePO nanocrystals by inducing high concentrations of Fe-Li antisite defects, which showed impressive capacity improvements of approaching 162, 127, 73, and 55 mAh g at 0.1, 10, 50, and 100 C, respectively, and a long-term cycling stability of maintaining about 74% capacity after 1000 cycles at 10 C. By using high-resolution transmission electron microscopy imaging and joint refinement of hard X-ray and neutron powder diffraction patterns, we revealed that the extraordinary high-rate performance could be achieved by suppressing the formation of electrochemically inactive phase (β-LiMnFePO, which is first reported in this work) embedded in α-LiMnFePO. Because of the coherent orientation relationship between β- and α-phases, the β-phase embedded would impede the Li diffusion along the [100] and/or [001] directions that was activated by the high density of Fe-Li antisite (4.24%) in α-phase. Thus, by optimizing concentrations of Fe-Li antisite defects and suppressing β-phase-embedded olivine structure, Li-ion diffusion properties in LiMnFePO nanocrystals can be tuned by generating new Li tunneling. These findings may provide insights into the design and generation of other advanced electrode materials with improved rate performance.

摘要

橄榄石结构的 LiMnFePO 由于其工作电压为 4.1V,比用于电动汽车电池的 LiFePO 更高,因此能量密度更大,而 LiFePO 的工作电压为 3.4V,能量密度较低。然而,LiMnFePO 电极的一个缺点是其电子和锂离子导电性相对较低,锂离子一维扩散。在此,通过在 LiMnFePO 纳米晶中诱导高浓度的 Fe-Li 反位缺陷,合成了具有优化锂离子扩散通道的橄榄石结构 α-LiMnFePO 纳米晶。在 0.1、10、50 和 100C 下,其容量分别提高了令人印象深刻的 162、127、73 和 55mAh g,在 10C 下经过 1000 次循环后,容量保持率约为 74%。通过使用高分辨率透射电子显微镜成像和硬 X 射线和中子粉末衍射图案的联合精修,我们揭示了通过抑制电化学非活性相(β-LiMnFePO 的形成,可以实现这种卓越的高倍率性能,β-LiMnFePO 首次在本工作中报道)嵌入在α-LiMnFePO 中。由于β-和 α-相之间的相干取向关系,嵌入的β-相会阻碍锂离子沿着[100]和/或[001]方向的扩散,而这种扩散是由α-相中的高密度 Fe-Li 反位(4.24%)激活的。因此,通过优化 Fe-Li 反位缺陷的浓度并抑制嵌入的橄榄石结构β相,可以通过产生新的 Li 隧道来调节 LiMnFePO 纳米晶中的锂离子扩散性能。这些发现可能为设计和生成具有改进倍率性能的其他先进电极材料提供思路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验