Suppr超能文献

锂离子在缺陷β-LiFePO4 相纳米晶中的存储和有效迁移。

Storage and Effective Migration of Li-Ion for Defected β-LiFePO4 Phase Nanocrystals.

机构信息

School of Advanced Materials, Peking University , Shenzhen Graduate School, Shenzhen 518055, People's Republic of China.

Advanced Light Source, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States.

出版信息

Nano Lett. 2016 Jan 13;16(1):601-8. doi: 10.1021/acs.nanolett.5b04302. Epub 2015 Dec 3.

Abstract

Lithium iron phosphate, a widely used cathode material, crystallizes typically in olivine-type phase, α-LiFePO4 (αLFP). However, the new phase β-LiFePO4 (βLFP), which can be transformed from αLFP under high temperature and pressure, is originally almost electrochemically inactive with no capacity for Li-ion battery, because the Li-ions are stored in the tetrahedral [LiO4] with very high activation barrier for migration and the one-dimensional (1D) migration channels for Li-ion diffusion in αLFP disappear, while the Fe ions in the β-phase are oriented similar to the 1D arrangement instead. In this work, using experimental studies combined with density functional theory calculations, we demonstrate that βLFP can be activated with creation of effective paths of Li-ion migration by optimized disordering. Thus, the new phase of βLFP cathode achieved a capacity of 128 mAh g(-1) at a rate of 0.1 C (1C = 170 mA g(-1)) with extraordinary cycling performance that 94.5% of the initial capacity retains after 1000 cycles at 1 C. The activation mechanism can be attributed to that the induced disorder (such as FeLiLiFe antisite defects, crystal distortion, and amorphous domains) creates new lithium migration passages, which free the captive stored lithium atoms and facilitate their intercalation/deintercalation from the cathode. Such materials activated by disorder are promising candidate cathodes for lithium batteries, and the related mechanism of storage and effective migration of Li-ions also provides new clues for future design of disordered-electrode materials with high capacity and high energy density.

摘要

磷酸铁锂,一种广泛使用的阴极材料,通常结晶为橄榄石型相,α-LiFePO4(αLFP)。然而,新相β-LiFePO4(βLFP)可以在高温高压下从αLFP 转变而来,原始状态下βLFP 几乎没有电化学活性,没有锂离子电池的容量,因为锂离子储存在四面体[LiO4]中,迁移的活化能非常高,并且在αLFP 中锂离子扩散的一维(1D)迁移通道消失,而β 相中的 Fe 离子的取向类似于一维排列。在这项工作中,我们使用实验研究结合密度泛函理论计算,证明通过优化无序可以使βLFP 激活并创建有效的锂离子迁移路径。因此,βLFP 的新相阴极在 0.1 C(1C = 170 mA g(-1)) 的倍率下实现了 128 mAh g(-1)的容量,具有非凡的循环性能,在 1 C 下 1000 次循环后保持 94.5%的初始容量。这种激活机制可以归因于诱导无序(如 FeLiLiFe 反位缺陷、晶体变形和非晶域)创建了新的锂迁移通道,释放了被捕获的储锂原子,并促进了它们从阴极的嵌入/脱嵌。这种通过无序激活的材料是锂离子电池有前途的阴极候选材料,锂离子的存储和有效迁移的相关机制也为未来设计具有高容量和高能量密度的无序电极材料提供了新的线索。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验