Blanc-Durand Paul, Van Der Gucht Axel, Guedj Eric, Abulizi Mukedaisi, Aoun-Sebaiti Mehdi, Lerman Lionel, Verger Antoine, Authier François-Jérôme, Itti Emmanuel
Department of Nuclear Medicine, H. Mondor Hospital, Assistance Publique-Hôpitaux de Paris/Paris-Est University, Créteil, France.
Department of Nuclear Medicine, La Timone Hospital, Assistance Publique-Hôpitaux de Marseille, Marseille, France.
PLoS One. 2017 Jul 13;12(7):e0181152. doi: 10.1371/journal.pone.0181152. eCollection 2017.
Macrophagic myofasciitis (MMF) is an emerging condition with highly specific myopathological alterations. A peculiar spatial pattern of a cerebral glucose hypometabolism involving occipito-temporal cortex and cerebellum have been reported in patients with MMF; however, the full pattern is not systematically present in routine interpretation of scans, and with varying degrees of severity depending on the cognitive profile of patients. Aim was to generate and evaluate a support vector machine (SVM) procedure to classify patients between healthy or MMF 18F-FDG brain profiles.
18F-FDG PET brain images of 119 patients with MMF and 64 healthy subjects were retrospectively analyzed. The whole-population was divided into two groups; a training set (100 MMF, 44 healthy subjects) and a testing set (19 MMF, 20 healthy subjects). Dimensionality reduction was performed using a t-map from statistical parametric mapping (SPM) and a SVM with a linear kernel was trained on the training set. To evaluate the performance of the SVM classifier, values of sensitivity (Se), specificity (Sp), positive predictive value (PPV), negative predictive value (NPV) and accuracy (Acc) were calculated.
The SPM12 analysis on the training set exhibited the already reported hypometabolism pattern involving occipito-temporal and fronto-parietal cortices, limbic system and cerebellum. The SVM procedure, based on the t-test mask generated from the training set, correctly classified MMF patients of the testing set with following Se, Sp, PPV, NPV and Acc: 89%, 85%, 85%, 89%, and 87%.
We developed an original and individual approach including a SVM to classify patients between healthy or MMF metabolic brain profiles using 18F-FDG-PET. Machine learning algorithms are promising for computer-aided diagnosis but will need further validation in prospective cohorts.
巨噬细胞性肌炎(MMF)是一种新出现的疾病,具有高度特异性的肌病理改变。据报道,MMF患者存在一种特殊的脑葡萄糖低代谢空间模式,累及枕颞叶皮质和小脑;然而,在扫描的常规解读中,这种完整模式并非系统地出现,且严重程度因患者的认知情况而异。目的是生成并评估一种支持向量机(SVM)程序,以对健康或MMF患者的18F-FDG脑影像特征进行分类。
回顾性分析了119例MMF患者和64例健康受试者的18F-FDG PET脑图像。将总体人群分为两组;一个训练集(100例MMF患者,44例健康受试者)和一个测试集(19例MMF患者,20例健康受试者)。使用来自统计参数映射(SPM)的t图进行降维,并在训练集上训练具有线性核的SVM。为评估SVM分类器的性能,计算了灵敏度(Se)、特异性(Sp)、阳性预测值(PPV)、阴性预测值(NPV)和准确率(Acc)。
对训练集的SPM12分析显示出已报道的低代谢模式,累及枕颞叶和额顶叶皮质、边缘系统和小脑。基于从训练集生成的t检验掩码的SVM程序,正确分类了测试集的MMF患者,其Se、Sp、PPV、NPV和Acc如下:89%、85%、85%、89%和87%。
我们开发了一种原创的个体化方法,包括使用SVM通过18F-FDG-PET对健康或MMF代谢性脑影像特征的患者进行分类。机器学习算法在计算机辅助诊断方面很有前景,但需要在前瞻性队列中进一步验证。