Suppr超能文献

18F-FDG脑PET判别分析方法在肌萎缩侧索硬化症诊断中的前瞻性验证

Prospective Validation of 18F-FDG Brain PET Discriminant Analysis Methods in the Diagnosis of Amyotrophic Lateral Sclerosis.

作者信息

Van Weehaeghe Donatienne, Ceccarini Jenny, Delva Aline, Robberecht Wim, Van Damme Philip, Van Laere Koen

机构信息

Division of Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, University Hospitals Leuven and KU Leuven, Leuven, Belgium.

Department of Neurology, University Hospitals Leuven, Leuven, Belgium.

出版信息

J Nucl Med. 2016 Aug;57(8):1238-43. doi: 10.2967/jnumed.115.166272. Epub 2016 Mar 3.

Abstract

UNLABELLED

An objective biomarker for early identification and accurate differential diagnosis of amyotrophic lateral sclerosis (ALS) is lacking. (18)F-FDG PET brain imaging with advanced statistical analysis may provide a tool to facilitate this. The objective of this work was to validate volume-of-interest (VOI) and voxel-based (using a support vector machine [SVM] approach) (18)F-FDG PET analysis methods to differentiate ALS from controls in an independent prospective large cohort, using a priori-derived classifiers. Furthermore, the prognostic value of (18)F-FDG PET was evaluated.

METHODS

A prospective cohort of patients with a suspected diagnosis of a motor neuron disorder (n = 119; mean age ± SD, 61 ± 12 y; 81 men and 38 women) was recruited. One hundred five patients were diagnosed with ALS (mean age ± SD, 61.0 ± 12 y; 74 men and 31 women) (group 2), 10 patients with primary lateral sclerosis (mean age ± SD, 55.5 ± 12 y; 3 men and 7 women), and 4 patients with progressive muscular atrophy (mean age ± SD, 59.2 ± 5 y; 4 men). The mean disease duration of all patients was 15.0 ± 13.4 mo at diagnosis, with PET conducted 15.2 ± 13.3 mo after the first symptoms. Data were compared with a previously gathered dataset of 20 screened healthy subjects (mean age ± SD, 62.4 ± 6.4 y; 12 men and 8 women) and 70 ALS patients (mean age ± SD, 62.2 ± 12.5 y; 44 men and 26 women) (group 1). Data were spatially normalized and analyzed on a VOI basis (statistical software (using the Hammers atlas) and voxel basis using statistical parametric mapping. Discriminant analysis and SVM were used to classify new cases based on the classifiers derived from group 1.

RESULTS

Compared with controls, ALS patients showed a nearly identical pattern of hypo- and hypermetabolism in groups 1 and 2. VOI-based discriminant analysis resulted in an 88.8% accuracy in predicting the new ALS cases. For the SVM approach, this accuracy was 100%. Brain metabolism between ALS and primary lateral sclerosis patients was nearly identical and not separable on an individual basis. Extensive frontotemporal hypometabolism was predictive for a lower survival using a Kaplan-Meier survival analysis (P < 0.001).

CONCLUSION

On the basis of a previously acquired training set, (18)F-FDG PET with advanced discriminant analysis methods is able to accurately distinguish ALS from controls and aids in assessing individual prognosis. Further validation on multicenter datasets and ALS-mimicking disorders is needed to fully assess the general applicability of this approach.

摘要

未标注

目前缺乏用于早期识别和准确鉴别诊断肌萎缩侧索硬化症(ALS)的客观生物标志物。采用先进统计分析的(18)F - FDG PET脑成像可能提供一种有助于实现此目的的工具。本研究的目的是在一个独立的前瞻性大型队列中,使用先验衍生的分类器,验证感兴趣区(VOI)和基于体素(使用支持向量机[SVM]方法)的(18)F - FDG PET分析方法,以区分ALS与对照组。此外,还评估了(18)F - FDG PET的预后价值。

方法

招募了一个疑似运动神经元疾病患者的前瞻性队列(n = 119;平均年龄±标准差,61±12岁;81名男性和38名女性)。其中105例患者被诊断为ALS(平均年龄±标准差,61.0±12岁;74名男性和31名女性)(第2组),10例为原发性侧索硬化症患者(平均年龄±标准差,55.5±12岁;3名男性和7名女性),4例为进行性肌萎缩患者(平均年龄±标准差,59.2±5岁;4名男性)。所有患者诊断时的平均病程为15.0±13.4个月,PET检查在出现首发症状后15.2±13.3个月进行。将数据与之前收集的20名经筛选的健康受试者(平均年龄±标准差,62.4±6.4岁;12名男性和8名女性)和70例ALS患者(平均年龄±标准差,62.2±12.5岁;44名男性和26名女性)(第1组)的数据集进行比较。数据进行空间归一化处理,并基于VOI(使用统计软件(采用哈默斯图谱))和基于体素使用统计参数映射进行分析。判别分析和支持向量机用于根据第1组得出的分类器对新病例进行分类。

结果

与对照组相比,第1组和第2组的ALS患者表现出几乎相同的低代谢和高代谢模式。基于VOI的判别分析预测新ALS病例的准确率为88.8%。对于支持向量机方法而言,该准确率为100%。ALS患者和原发性侧索硬化症患者之间的脑代谢几乎相同,无法在个体水平上区分。使用Kaplan - Meier生存分析,广泛的额颞叶低代谢预示着较低的生存率(P < 0.001)。

结论

基于先前获得的训练集,采用先进判别分析方法的(18)F - FDG PET能够准确区分ALS与对照组,并有助于评估个体预后。需要在多中心数据集和类似ALS的疾病上进一步验证,以全面评估该方法的普遍适用性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验