Suppr超能文献

水力再分配:盐渍土中植物的局限性。

Hydraulic redistribution: limitations for plants in saline soils.

机构信息

Department of Agrifood Production and Environmental Sciences, Università degli Studi di Firenze, Viale delle Idee 30, 50019 Sesto Fiorentino, Florence, Italy.

School of Land and Food, University of Tasmania, Hobart, TAS, 7001, Australia.

出版信息

Plant Cell Environ. 2017 Oct;40(10):2437-2446. doi: 10.1111/pce.13020. Epub 2017 Aug 7.

Abstract

Hydraulic redistribution (HR), the movement of water from wet to dry patches in the soil via roots, occurs in different ecosystems and plant species. By extension of the principle that HR is driven by gradients in soil water potential, HR has been proposed to occur for plants in saline soils. Despite the inherent spatial patchiness and salinity gradients in these soils, the lack of direct evidence of HR in response to osmotic gradients prompted us to ask the question: are there physical or physiological constraints to HR for plants in saline environments? We propose that build-up of ions in the root xylem sap and in the leaf apoplast, with the latter resulting in a large predawn disequilibrium of water potential in shoots compared with roots and soil, would both impede HR. We present a conceptual model that illustrates how processes in root systems in heterogeneous salinity with water potential gradients, even if equal to those in non-saline soils, will experience a dampened magnitude of water potential gradients in the soil-plant continuum, minimizing or preventing HR. Finally, we provide an outlook for understanding the relevance of HR for plants in saline environments by addressing key research questions on plant salinity tolerance.

摘要

水力再分配(HR),即水通过根系从土壤的湿区向干区移动的现象,发生在不同的生态系统和植物物种中。根据 HR 是由土壤水势梯度驱动的原理,可以推断出在盐渍土壤中,植物也会发生 HR。尽管这些土壤具有固有的空间斑块和盐分梯度,但缺乏对渗透压梯度响应的 HR 的直接证据,促使我们提出这样一个问题:在盐环境中,植物进行 HR 是否受到物理或生理限制?我们提出,根木质部汁液和叶片细胞外空间中离子的积累,以及后者导致叶片在黎明前与根和土壤之间存在较大的水势不平衡,都会阻碍 HR。我们提出了一个概念模型,说明了即使在与非盐渍土壤相同的水势梯度条件下,根系系统在异质性盐分环境中的过程,将经历土壤-植物连续体中土壤水势梯度幅度的减弱,从而最小化或防止 HR。最后,我们通过解决有关植物耐盐性的关键研究问题,为理解 HR 对盐环境中植物的相关性提供了展望。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验