Suppr超能文献

核壳柱上的保留模型。

Retention Models on Core-Shell Columns.

作者信息

Jandera Pavel, Hájek Tomáš, Růžičková Marie

出版信息

J AOAC Int. 2017 Nov 1;100(6):1636-1646. doi: 10.5740/jaoacint.17-0233. Epub 2017 Jul 13.

Abstract

A thin, active shell layer on core-shell columns provides high efficiency in HPLC at moderately high pressures. We revisited three models of mobile phase effects on retention for core-shell columns in mixed aqueous-organic mobile phases: linear solvent strength and Snyder-Soczewiński two-parameter models and a three-parameter model. For some compounds, two-parameter models show minor deviations from linearity due to neglect of possible minor retention in pure weak solvent, which is compensated for in the three-parameter model, which does not explicitly assume either the adsorption or the partition retention mechanism in normal- or reversed-phase systems. The model retention equation can be formulated as a function of solute retention factors of nonionic compounds in pure organic solvent and in pure water (or aqueous buffer) and of the volume fraction of an either aqueous or organic solvent component in a two-component mobile phase. With core-shell columns, the impervious solid core does not participate in the retention process. Hence, the thermodynamic retention factors, defined as the ratio of the mass of the analyte mass contained in the stationary phase to its mass in the mobile phase in the column, should not include the particle core volume. The values of the thermodynamic factors are lower than the retention factors determined using a convention including the inert core in the stationary phase. However, both conventions produce correct results if consistently used to predict the effects of changing mobile phase composition on retention. We compared three types of core-shell columns with C18-, phenyl-hexyl-, and biphenyl-bonded phases. The core-shell columns with phenyl-hexyl- and biphenyl-bonded ligands provided lower errors in two-parameter model predictions for alkylbenzenes, phenolic acids, and flavonoid compounds in comparison with C18-bonded ligands.

摘要

核壳柱上的薄而活性的壳层在中等高压下的高效液相色谱中提供了高效率。我们重新审视了在混合水-有机流动相中核壳柱上流动相影响保留的三种模型:线性溶剂强度模型、Snyder-Soczewiński双参数模型和三参数模型。对于某些化合物,双参数模型由于忽略了在纯弱溶剂中可能的微小保留而显示出与线性的微小偏差,这在三参数模型中得到了补偿,该模型在正相或反相系统中没有明确假设吸附或分配保留机制。模型保留方程可以表示为非离子化合物在纯有机溶剂和纯水中(或水性缓冲液中)的溶质保留因子以及两组分流动相中水性或有机溶剂组分的体积分数的函数。对于核壳柱,不可渗透的固体核不参与保留过程。因此,定义为固定相中分析物质量与其在柱中流动相质量之比的热力学保留因子不应包括颗粒核体积。热力学因子的值低于使用包括固定相中惰性核的惯例确定的保留因子。然而,如果一致地用于预测流动相组成变化对保留的影响,两种惯例都会产生正确的结果。我们比较了三种具有C18、苯基己基和联苯键合相的核壳柱。与C18键合配体相比,具有苯基己基和联苯键合配体的核壳柱在烷基苯、酚酸和黄酮类化合物的双参数模型预测中提供了更低的误差。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验