Abdolell Mohamed, Tsuruda Kaitlyn M, Brown Peter, Caines Judy S, Iles Sian E
1 Department of Diagnostic Imaging, Nova Scotia Health Authority , Halifax , NS, Canada.
2 Department of Diagnostic Radiology, Dalhousie University, Faculty of Medicine , Halifax , NS, Canada.
Br J Radiol. 2017 Oct;90(1078):20170307. doi: 10.1259/bjr.20170307. Epub 2017 Sep 8.
Measures of percent mammographic density (PMD) are often categorized using various density scales. The purpose of this study was to examine information loss associated with the use of categorical density scales.
Baseline PMD was assessed at 1% precision for 2,374 females. The data were used to create 21-category, 4-category and 2-category density scales. R-squared and root mean square error were used to evaluate the effect of categorizing PMD. The area under the receiver operator characteristic curves were compared between cancer risk models employing solely categorical PMD scales and solely baseline PMD for a subset of females (424 cases, 848 controls).
R-squared value decreased from 1.00 (1% PMD) to 0.56 (2-category scale), while root mean square error increased from 0.00 (1% PMD) to 10.83 (2-category scale). The area under the receiver operator characteristic curve decreased from 0.64 for a cancer risk model using 1% PMD to 0.58 for a risk model using a 21-category density scale (p < 0.0001), 0.55 for a 4-category Breast Imaging, Reporting and Data System-like scale (p < 0.0001) and 0.50 for a 2-category Breast Imaging, Reporting and Data System-like scale (high vs low) (p < 0.0001).
Categorizing PMD measures into categorical density scales leads to a significant loss of information. Indeed, a simple high versus low split of PMD using a 50% cut point yields a cancer risk model with no discriminatory power. Advances in knowledge: Use of categorical mammographic density scales rather than continuous percent mammographic density measures leads to significant loss of information. Breast cancer risk models using categorical mammographic density scales perform more poorly than models using continuous PMD measures.
乳腺钼靶密度百分比(PMD)的测量通常使用各种密度分级标准进行分类。本研究的目的是检查与使用分类密度分级标准相关的信息损失。
对2374名女性进行基线PMD评估,精确到1%。这些数据用于创建21分类、4分类和2分类密度分级标准。使用决定系数(R平方)和均方根误差来评估PMD分类的效果。对于一部分女性(424例病例,848例对照),比较仅使用分类PMD分级标准的癌症风险模型和仅使用基线PMD的癌症风险模型的受试者操作特征曲线下面积。
决定系数值从1.00(1%的PMD)降至0.56(2分类分级标准),而均方根误差从0.00(1%的PMD)增至10.83(2分类分级标准)。受试者操作特征曲线下面积从使用1% PMD的癌症风险模型的0.64降至使用21分类密度分级标准的风险模型的0.58(p<0.0001),使用类似乳腺影像报告和数据系统4分类分级标准的为0.55(p<0.0001),使用类似乳腺影像报告和数据系统2分类分级标准(高与低)的为0.50(p<0.0001)。
将PMD测量值分类为分类密度分级标准会导致显著的信息损失。实际上,使用50%的切点对PMD进行简单的高与低划分会产生一个没有鉴别力的癌症风险模型。知识进展:使用分类乳腺钼靶密度分级标准而非连续的乳腺钼靶密度百分比测量会导致显著的信息损失。使用分类乳腺钼靶密度分级标准的乳腺癌风险模型比使用连续PMD测量的模型表现更差。