Suppr超能文献

运用全谱分析对人皮质骨断裂韧性的喇曼光谱评估。

Applying Full Spectrum Analysis to a Raman Spectroscopic Assessment of Fracture Toughness of Human Cortical Bone.

机构信息

1 Department of Orthopaedic Surgery and Rehabilitation, Vanderbilt University Medical Center, Nashville, TN, USA.

2 Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.

出版信息

Appl Spectrosc. 2017 Oct;71(10):2385-2394. doi: 10.1177/0003702817718149. Epub 2017 Jul 14.

Abstract

A decline in the inherent quality of bone tissue is a † Equal contributors contributor to the age-related increase in fracture risk. Although this is well-known, the important biochemical factors of bone quality have yet to be identified using Raman spectroscopy (RS), a nondestructive, inelastic light-scattering technique. To identify potential RS predictors of fracture risk, we applied principal component analysis (PCA) to 558 Raman spectra (370-1720 cm) of human cortical bone acquired from 62 female and male donors (nine spectra each) spanning adulthood (age range = 21-101 years). Spectra were analyzed prior to R-curve, nonlinear fracture mechanics that delineate crack initiation (K) from crack growth toughness (K). The traditional νphosphate peak per amide I peak (mineral-to-matrix ratio) weakly correlated with K (r = 0.341, p = 0.0067) and overall crack growth toughness (J-int: r = 0.331, p = 0.0086). Sub-peak ratios of the amide I band that are related to the secondary structure of type 1 collagen did not correlate with the fracture toughness properties. In the full spectrum analysis, one principal component (PC5) correlated with all of the mechanical properties (K: r = - 0.467, K: r = - 0.375, and J-int: r = - 0.428; p < 0.0067). More importantly, when known predictors of fracture toughness, namely age and/or volumetric bone mineral density (vBMD), were included in general linear models as covariates, several PCs helped explain 45.0% (PC5) to 48.5% (PC7), 31.4% (PC6), and 25.8% (PC7) of the variance in K, K, and J-int, respectively. Deriving spectral features from full spectrum analysis may improve the ability of RS, a clinically viable technology, to assess fracture risk.

摘要

骨组织固有质量的下降是导致与年龄相关的骨折风险增加的 † 同等贡献者。虽然这是众所周知的,但使用拉曼光谱(RS)——一种非破坏性的非弹性光散射技术,尚未确定骨质量的重要生化因素。为了确定潜在的 RS 骨折风险预测因子,我们对从 62 名女性和男性供体(每个年龄范围为 21-101 岁)获得的 558 个人类皮质骨的 RS 光谱(370-1720 cm)应用主成分分析(PCA)。在 R 曲线之前分析光谱,R 曲线是区分裂纹起始(K)和裂纹扩展韧性(K)的非线性断裂力学。传统的 ν磷酸盐峰与酰胺 I 峰(矿物质与基质比)(mineral-to-matrix ratio)与 K(r = 0.341,p = 0.0067)和整体裂纹扩展韧性(J-int:r = 0.331,p = 0.0086)弱相关。与 1 型胶原蛋白二级结构相关的酰胺 I 带的亚峰比与断裂韧性特性无关。在全谱分析中,一个主成分(PC5)与所有力学性能相关(K:r = -0.467,K:r = -0.375,J-int:r = -0.428;p < 0.0067)。更重要的是,当将骨折韧性的已知预测因子(即年龄和/或体积骨矿物质密度(vBMD))作为协变量包含在广义线性模型中时,几个 PC 有助于解释 K、K 和 J-int 的方差的 45.0%(PC5)至 48.5%(PC7)、31.4%(PC6)和 25.8%(PC7)。从全谱分析中得出光谱特征可能会提高 RS 的能力,RS 是一种可行的临床技术,可以评估骨折风险。

相似文献

1
Applying Full Spectrum Analysis to a Raman Spectroscopic Assessment of Fracture Toughness of Human Cortical Bone.
Appl Spectrosc. 2017 Oct;71(10):2385-2394. doi: 10.1177/0003702817718149. Epub 2017 Jul 14.
3
Bone collagen network integrity and transverse fracture toughness of human cortical bone.
Bone. 2019 Mar;120:187-193. doi: 10.1016/j.bone.2018.10.024. Epub 2018 Oct 28.
4
Identifying Novel Clinical Surrogates to Assess Human Bone Fracture Toughness.
J Bone Miner Res. 2015 Jul;30(7):1290-300. doi: 10.1002/jbmr.2452. Epub 2015 Jun 8.
6
8
Improved prediction of femoral fracture toughness in mice by combining standard medical imaging with Raman spectroscopy.
J Biomech. 2021 Feb 12;116:110243. doi: 10.1016/j.jbiomech.2021.110243. Epub 2021 Jan 13.
10
Effect of ribose incubation on physical, chemical, and mechanical properties of human cortical bone.
J Mech Behav Biomed Mater. 2023 Apr;140:105731. doi: 10.1016/j.jmbbm.2023.105731. Epub 2023 Feb 19.

引用本文的文献

2
Optimizing number of Raman spectra using an artificial neural network guided Monte Carlo simulation approach to analyze human cortical bone.
Spectrochim Acta A Mol Biomol Spectrosc. 2025 Jan 15;325:125035. doi: 10.1016/j.saa.2024.125035. Epub 2024 Aug 25.
3
Impact of heavy alcohol consumption on cortical bone mechanical properties in male rhesus macaques.
Bone. 2024 Apr;181:117041. doi: 10.1016/j.bone.2024.117041. Epub 2024 Feb 5.
5
Fracture Toughness: Bridging the Gap Between Hip Fracture and Fracture Risk Assessment.
Curr Osteoporos Rep. 2023 Jun;21(3):253-265. doi: 10.1007/s11914-023-00789-4. Epub 2023 Apr 27.
6
Quantitative Chemical Imaging of Bone Tissue for Intraoperative and Diagnostic Applications.
Anal Chem. 2022 Mar 8;94(9):3791-3799. doi: 10.1021/acs.analchem.1c04354. Epub 2022 Feb 21.
7
Bone hydration: How we can evaluate it, what can it tell us, and is it an effective therapeutic target?
Bone Rep. 2021 Dec 21;16:101161. doi: 10.1016/j.bonr.2021.101161. eCollection 2022 Jun.
8
Compositional assessment of bone by Raman spectroscopy.
Analyst. 2021 Dec 6;146(24):7464-7490. doi: 10.1039/d1an01560e.
9
Improved prediction of femoral fracture toughness in mice by combining standard medical imaging with Raman spectroscopy.
J Biomech. 2021 Feb 12;116:110243. doi: 10.1016/j.jbiomech.2021.110243. Epub 2021 Jan 13.
10
Soft-tissue spectral subtraction improves transcutaneous Raman estimates of murine bone strength in vivo.
J Biophotonics. 2020 Nov;13(11):e202000256. doi: 10.1002/jbio.202000256. Epub 2020 Aug 31.

本文引用的文献

1
Towards the prediction of fragility fractures with Raman spectroscopy.
J Raman Spectrosc. 2015 Jul;46(7):610-618. doi: 10.1002/jrs.4706. Epub 2015 May 12.
3
Prevalent role of porosity and osteonal area over mineralization heterogeneity in the fracture toughness of human cortical bone.
J Biomech. 2016 Sep 6;49(13):2748-2755. doi: 10.1016/j.jbiomech.2016.06.009. Epub 2016 Jun 15.
4
Tissue-Level Mechanical Properties of Bone Contributing to Fracture Risk.
Curr Osteoporos Rep. 2016 Aug;14(4):138-50. doi: 10.1007/s11914-016-0314-3.
5
Bone Material Properties in Osteogenesis Imperfecta.
J Bone Miner Res. 2016 Apr;31(4):699-708. doi: 10.1002/jbmr.2835. Epub 2016 Mar 26.
6
Novel Raman Spectroscopic Biomarkers Indicate That Postyield Damage Denatures Bone's Collagen.
J Bone Miner Res. 2016 May;31(5):1015-25. doi: 10.1002/jbmr.2768. Epub 2016 Jan 13.
8
Osteogenesis imperfecta.
Lancet. 2016 Apr 16;387(10028):1657-71. doi: 10.1016/S0140-6736(15)00728-X. Epub 2015 Nov 3.
9
Next-generation Raman tomography instrument for non-invasive in vivo bone imaging.
Biomed Opt Express. 2015 Feb 11;6(3):793-806. doi: 10.1364/BOE.6.000793. eCollection 2015 Mar 1.
10
Prediction of local ultimate strain and toughness of trabecular bone tissue by Raman material composition analysis.
Biomed Res Int. 2015;2015:457371. doi: 10.1155/2015/457371. Epub 2015 Jan 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验