Unal Mustafa, Unlu Ramazan, Uppuganti Sasidhar, Nyman Jeffry S
Department of Orthopedic Surgery, Harvard Medical School, Boston, MA 02015, USA.
The Center for Advanced Orthopedics Studies, Beth Israel Deaconess Medical Center, Boston, MA 02015, USA.
Bone Rep. 2025 Aug 15;26:101870. doi: 10.1016/j.bonr.2025.101870. eCollection 2025 Sep.
This study applied Raman spectroscopy (RS) to ex vivo human cadaveric femoral mid-diaphysis cortical bone specimens ( = 118 donors; age range 21-101 years) to predict fracture toughness properties via machine learning (ML) models. Spectral features, together with demographic variables (age, sex) and structural parameters (cortical porosity, volumetric bone mineral density), were fed into support vector regression (SVR), extreme tree regression (ETR), extreme gradient boosting (XGB), and ensemble models to predict fracture-toughness metrics such as crack-initiation toughness (K) and energy-to-fracture (J-integral). Feature selection was based on Raman-derived mineral and organic matrix parameters, such as νPhosphate (PO)/CH-wag, νPO/Amide I, and others, to capture the complex composition of bone. Our results indicate that ensemble models consistently outperformed individual models, with the best performance for crack initiation toughness (K) prediction being achieved using the ensemble approach. This yielded a coefficient of determination (R) of 0.623, root-mean squared error (RMSE) of 1.320, mean absolute error (MAE) of 1.015, and mean percentage absolute error (MAPE) of 0.134. For prediction of the overall energy to propagate a crack (J-integral), the XGB model achieved an R of 0.737, RMSE of 2.634, MAE of 2.283, and MAPE of 0.240. This study highlights the importance of incorporating mineral quality properties (MP) and organic matrix properties (OMP) for enhanced prediction accuracy. This work represents the first-ever study combining Raman spectroscopy with other clinical and structural features to predict fracture toughness of human cortical bone, demonstrating the potential of artificial intelligence (AI) and ML in advancing bone research. Future studies could focus on larger datasets and more advanced modeling techniques to further improve predictive capabilities.
本研究将拉曼光谱(RS)应用于离体的人尸体股骨干中段皮质骨标本(n = 118名捐赠者;年龄范围21 - 101岁),通过机器学习(ML)模型预测断裂韧性特性。光谱特征,连同人口统计学变量(年龄、性别)和结构参数(皮质孔隙率、体积骨矿物质密度),被输入到支持向量回归(SVR)、极端树回归(ETR)、极端梯度提升(XGB)和集成模型中,以预测诸如裂纹起始韧性(K)和断裂能(J积分)等断裂韧性指标。特征选择基于拉曼衍生的矿物质和有机基质参数,如ν磷酸盐(PO)/CH摇摆、νPO/酰胺I等,以捕捉骨骼的复杂组成。我们的结果表明,集成模型始终优于单个模型,使用集成方法对裂纹起始韧性(K)预测的性能最佳。这产生了决定系数(R)为0.623,均方根误差(RMSE)为1.320,平均绝对误差(MAE)为1.015,平均百分比绝对误差(MAPE)为0.134。对于裂纹扩展总能量(J积分)的预测,XGB模型的R为0.737,RMSE为2.634,MAE为2.283,MAPE为0.240。本研究强调了纳入矿物质质量特性(MP)和有机基质特性(OMP)以提高预测准确性的重要性。这项工作代表了首次将拉曼光谱与其他临床和结构特征相结合来预测人类皮质骨断裂韧性的研究,证明了人工智能(AI)和ML在推进骨研究方面的潜力。未来的研究可以集中在更大的数据集和更先进的建模技术上,以进一步提高预测能力。