Suppr超能文献

用于预测慢性心力衰竭患者危及生命的室性快速心律失常的风险分层个性化模型。

Risk stratification personalised model for prediction of life-threatening ventricular tachyarrhythmias in patients with chronic heart failure.

作者信息

Frolov Alexander Vladimirovich, Vaikhanskaya Tatjana Gennadjevna, Melnikova Olga Petrovna, Vorobiev Anatoly Pavlovich, Guel Ludmila Michajlovna

机构信息

Republican Scientific and Practical Centre of Cardiology, Minsk, Belarus, Belarus.

出版信息

Kardiol Pol. 2017;75(7):682-688. doi: 10.5603/KP.a2017.0060.

Abstract

BACKGROUND

The development of prognostic factors of life-threatening ventricular tachyarrhythmias (VTA) and sudden cardiac death (SCD) continues to maintain its priority and relevance in cardiology. The development of a method of personalised prognosis based on multifactorial analysis of the risk factors associated with life-threatening heart rhythm disturbances is considered a key research and clinical task.

AIM

To design a prognostic and mathematical model to define personalised risk for life-threatening VTA in patients with chronic heart failure (CHF).

METHODS

The study included 240 patients with CHF (mean-age of 50.5 ± 12.1 years; left ventricular ejection fraction 32.8 ± 10.9%; follow-up period 36.8 ± 5.7 months). The participants received basic therapy for heart failure. The elec-trocardiogram (ECG) markers of myocardial electrical instability were assessed including microvolt T-wave alternans, heart rate turbulence, heart rate deceleration, and QT dispersion. Additionally, echocardiography and Holter monitoring (HM) were performed. The cardiovascular events were considered as primary endpoints, including SCD, paroxysmal ventricular tachycardia/ventricular fibrillation (VT/VF) based on HM-ECG data, and data obtained from implantable device interrogation (CRT-D, ICD) as well as appropriated shocks.

RESULTS

During the follow-up period, 66 (27.5%) subjects with CHF showed adverse arrhythmic events, including nine SCD events and 57 VTAs. Data from a stepwise discriminant analysis of cumulative ECG-markers of myocardial electrical instability were used to make a mathematical model of preliminary VTA risk stratification. Uni- and multivariate Cox logistic regression analysis were performed to define an individualised risk stratification model of SCD/VTA. A binary logistic regression model demonstrated a high prognostic significance of discriminant function with a classification sensitivity of 80.8% and specificity of 99.1% (F = 31.2; c2 = 143.2; p < 0.0001).

CONCLUSIONS

The method of personalised risk stratification using Cox logistic regression allows correct classification of more than 93.9% of CHF cases. A robust body of evidence concerning logistic regression prognostic significance to define VTA risk allows inclusion of this method into the algorithm of subsequent control and selection of the optimal treatment modality to treat patients with CHF.

摘要

背景

危及生命的室性快速心律失常(VTA)和心源性猝死(SCD)预后因素的研究在心脏病学领域仍然具有重要地位和相关性。基于对危及生命的心律紊乱相关危险因素进行多因素分析来开发个性化预后方法,被视为一项关键的研究和临床任务。

目的

设计一种预后和数学模型,以确定慢性心力衰竭(CHF)患者发生危及生命的VTA的个性化风险。

方法

该研究纳入了240例CHF患者(平均年龄50.5±12.1岁;左心室射血分数32.8±10.9%;随访期36.8±5.7个月)。参与者接受了心力衰竭的基础治疗。评估了心肌电不稳定的心电图(ECG)标志物,包括微伏T波交替、心率震荡、心率减速和QT离散度。此外,还进行了超声心动图和动态心电图监测(HM)。心血管事件被视为主要终点,包括SCD、基于HM-ECG数据的阵发性室性心动过速/心室颤动(VT/VF),以及从植入式设备询问(CRT-D、ICD)获得的数据和适当的电击。

结果

在随访期间,66例(27.5%)CHF患者出现了不良心律失常事件,包括9例SCD事件和57例VTA。来自心肌电不稳定累积ECG标志物逐步判别分析的数据被用于建立初步VTA风险分层的数学模型。进行单因素和多因素Cox逻辑回归分析,以确定SCD/VTA的个体化风险分层模型。二元逻辑回归模型显示判别函数具有较高的预后意义,分类敏感性为80.8%,特异性为99.1%(F = 31.2;c2 = 143.2;p < 0.0001)。

结论

使用Cox逻辑回归进行个性化风险分层的方法能够正确分类超过93.9%的CHF病例。关于逻辑回归对定义VTA风险的预后意义的大量证据,使得该方法能够被纳入后续控制和选择CHF患者最佳治疗方式的算法中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验