Suppr超能文献

药物设计阶段BCRP/ABCG2底物早期检测计算模型集成的开发与验证

Development and Validation of a Computational Model Ensemble for the Early Detection of BCRP/ABCG2 Substrates during the Drug Design Stage.

作者信息

Gantner Melisa E, Peroni Roxana N, Morales Juan F, Villalba María L, Ruiz María E, Talevi Alan

机构信息

Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , La Plata, B1900AJI Buenos Aires, Argentina.

Instituto de Investigaciones Farmacológicas (ININFA UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires , Junín 956 5°, 1113 Ciudad Autónoma de Buenos Aires, Argentina.

出版信息

J Chem Inf Model. 2017 Aug 28;57(8):1868-1880. doi: 10.1021/acs.jcim.7b00016. Epub 2017 Aug 8.

Abstract

Breast Cancer Resistance Protein (BCRP) is an ATP-dependent efflux transporter linked to the multidrug resistance phenomenon in many diseases such as epilepsy and cancer and a potential source of drug interactions. For these reasons, the early identification of substrates and nonsubstrates of this transporter during the drug discovery stage is of great interest. We have developed a computational nonlinear model ensemble based on conformational independent molecular descriptors using a combined strategy of genetic algorithms, J48 decision tree classifiers, and data fusion. The best model ensemble consists in averaging the ranking of the 12 decision trees that showed the best performance on the training set, which also demonstrated a good performance for the test set. It was experimentally validated using the ex vivo everted rat intestinal sac model. Five anticonvulsant drugs classified as nonsubstrates for BRCP by the model ensemble were experimentally evaluated, and none of them proved to be a BCRP substrate under the experimental conditions used, thus confirming the predictive ability of the model ensemble. The model ensemble reported here is a potentially valuable tool to be used as an in silico ADME filter in computer-aided drug discovery campaigns intended to overcome BCRP-mediated multidrug resistance issues and to prevent drug-drug interactions.

摘要

乳腺癌耐药蛋白(BCRP)是一种依赖ATP的外排转运蛋白,与癫痫和癌症等多种疾病中的多药耐药现象相关,也是药物相互作用的一个潜在来源。基于这些原因,在药物研发阶段早期识别该转运蛋白的底物和非底物备受关注。我们采用遗传算法、J48决策树分类器和数据融合的组合策略,开发了一种基于构象独立分子描述符的计算非线性模型集成。最佳模型集成是对在训练集上表现最佳的12棵决策树的排名进行平均,该模型集成在测试集上也表现良好。使用离体外翻大鼠肠囊模型进行了实验验证。对模型集成分类为BRCP非底物的5种抗惊厥药物进行了实验评估,在所使用的实验条件下,它们均未被证明是BCRP底物,从而证实了模型集成的预测能力。本文报道的模型集成是一种潜在有价值的工具,可在旨在克服BCRP介导的多药耐药问题和预防药物相互作用的计算机辅助药物研发活动中用作计算机辅助药物代谢动力学筛选工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验