Global DMPK, Takeda California Inc., San Diego, California, 92121, USA.
Global DMPK, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan.
AAPS J. 2021 May 18;23(4):72. doi: 10.1208/s12248-021-00604-x.
The mechanistic neuropharmacokinetic (neuroPK) model was established to predict unbound brain-to-plasma partitioning (K) by considering in vitro efflux activities of multiple drug resistance 1 (MDR1) and breast cancer resistance protein (BCRP). Herein, we directly compare this model to a computational machine learning approach utilizing physicochemical descriptors and efflux ratios of MDR1 and BCRP-expressing cells for predicting K in rats. Two different types of machine learning techniques, Gaussian processes (GP) and random forest regression (RF), were assessed by the time and cluster-split validation methods using 640 internal compounds. The predictivity of machine learning models based on only molecular descriptors in the time-split dataset performed worse than the cluster-split dataset, whereas the models incorporating MDR1 and BCRP efflux ratios showed similar predictivity between time and cluster-split datasets. The GP incorporating MDR1 and BCRP in the time-split dataset achieved the highest correlation (R = 0.602). These results suggested that incorporation of MDR1 and BCRP in machine learning is beneficial for robust and accurate prediction. K prediction utilizing the neuroPK model was significantly worse compared to machine learning approaches for the same dataset. We also investigated the predictivity of K using an external independent test set of 34 marketed drugs. Compared to machine learning models, the neuroPK model showed better predictive performance with R of 0.577. This work demonstrates that the machine learning model for K achieves maximum predictive performance within the chemical applicability domain, whereas the neuroPK model is applicable more widely beyond the chemical space covered in the training dataset.
建立了机制神经药代动力学(神经 PK)模型,通过考虑多药耐药蛋白 1(MDR1)和乳腺癌耐药蛋白(BCRP)的体外外排活性来预测未结合的脑-血浆分配比(K)。在此,我们直接将该模型与利用物理化学描述符和 MDR1 和 BCRP 表达细胞的外排比来预测大鼠 K 的计算机器学习方法进行比较。采用时间和聚类拆分验证方法,使用 640 个内部化合物评估了两种不同类型的机器学习技术,即高斯过程(GP)和随机森林回归(RF)。基于仅在时间拆分数据集中的分子描述符的机器学习模型的预测性能不如聚类拆分数据集,而纳入 MDR1 和 BCRP 外排率的模型在时间和聚类拆分数据集中表现出相似的预测性能。在时间拆分数据集中纳入 MDR1 和 BCRP 的 GP 达到了最高相关性(R = 0.602)。这些结果表明,在机器学习中纳入 MDR1 和 BCRP 有利于稳健和准确的预测。与相同数据集的机器学习方法相比,利用神经 PK 模型进行 K 预测的效果要差得多。我们还使用 34 种市售药物的外部独立测试集来研究 K 的预测能力。与机器学习模型相比,神经 PK 模型的 R 值为 0.577,表现出更好的预测性能。这项工作表明,K 的机器学习模型在化学适用性域内实现了最大的预测性能,而神经 PK 模型在训练数据集涵盖的化学空间之外更广泛地适用。