IEEE Trans Pattern Anal Mach Intell. 2018 Jul;40(7):1584-1598. doi: 10.1109/TPAMI.2017.2725279. Epub 2017 Jul 11.
We present an algorithm that automatically establishes dense correspondences between a large number of 3D faces. Starting from automatically detected sparse correspondences on the outer boundary of 3D faces, the algorithm triangulates existing correspondences and expands them iteratively by matching points of distinctive surface curvature along the triangle edges. After exhausting keypoint matches, further correspondences are established by generating evenly distributed points within triangles by evolving level set geodesic curves from the centroids of large triangles. A deformable model (K3DM) is constructed from the dense corresponded faces and an algorithm is proposed for morphing the K3DM to fit unseen faces. This algorithm iterates between rigid alignment of an unseen face followed by regularized morphing of the deformable model. We have extensively evaluated the proposed algorithms on synthetic data and real 3D faces from the FRGCv2, Bosphorus, BU3DFE and UND Ear databases using quantitative and qualitative benchmarks. Our algorithm achieved dense correspondences with a mean localisation error of 1.28 mm on synthetic faces and detected 14 anthropometric landmarks on unseen real faces from the FRGCv2 database with 3 mm precision. Furthermore, our deformable model fitting algorithm achieved 98.5 percent face recognition accuracy on the FRGCv2 and 98.6 percent on Bosphorus database. Our dense model is also able to generalize to unseen datasets.
我们提出了一种算法,能够自动建立大量 3D 人脸之间的密集对应关系。从 3D 人脸外边界上自动检测到的稀疏对应关系开始,该算法通过在三角形边缘上匹配具有独特表面曲率的点来对现有对应关系进行三角剖分,并通过从大三角形的质心演化水平集测地线曲线在三角形内生成均匀分布的点来迭代扩展它们。在耗尽关键点匹配后,通过从大三角形的质心演化水平集测地线曲线,在三角形内生成均匀分布的点,进一步建立三角形内的对应关系。从密集对应关系的脸上构建了一个可变形模型(K3DM),并提出了一种算法来将 K3DM 变形以拟合未见过的脸。该算法在未见过的脸进行刚性对齐后进行迭代,然后对可变形模型进行正则化变形。我们在 FRGCv2、Bosphorus、BU3DFE 和 UND Ear 数据库中的合成数据和真实 3D 脸上对提出的算法进行了广泛评估,使用定量和定性基准进行了评估。我们的算法在合成脸上实现了平均局部化误差为 1.28 毫米的密集对应关系,并在 FRGCv2 数据库中检测到 14 个未见过的真实人脸的人体测量标志点,精度为 3 毫米。此外,我们的可变形模型拟合算法在 FRGCv2 数据库上实现了 98.5%的人脸识别准确率,在 Bosphorus 数据库上实现了 98.6%的准确率。我们的密集模型也能够推广到未见过的数据集。