IEEE Trans Pattern Anal Mach Intell. 2022 Oct;44(10):6667-6682. doi: 10.1109/TPAMI.2021.3090942. Epub 2022 Sep 14.
The 3D Morphable Model (3DMM) is a powerful statistical tool for representing 3D face shapes. To build a 3DMM, a training set of face scans in full point-to-point correspondence is required, and its modeling capabilities directly depend on the variability contained in the training data. Thus, to increase the descriptive power of the 3DMM, establishing a dense correspondence across heterogeneous scans with sufficient diversity in terms of identities, ethnicities, or expressions becomes essential. In this manuscript, we present a fully automatic approach that leverages a 3DMM to transfer its dense semantic annotation across raw 3D faces, establishing a dense correspondence between them. We propose a novel formulation to learn a set of sparse deformation components with local support on the face that, together with an original non-rigid deformation algorithm, allow the 3DMM to precisely fit unseen faces and transfer its semantic annotation. We extensively experimented our approach, showing it can effectively generalize to highly diverse samples and accurately establish a dense correspondence even in presence of complex facial expressions. The accuracy of the dense registration is demonstrated by building a heterogeneous, large-scale 3DMM from more than 9,000 fully registered scans obtained by joining three large datasets together.
3D 可变形模型(3DMM)是一种强大的统计工具,用于表示 3D 人脸形状。为了构建 3DMM,需要一组具有完全点对点对应关系的人脸扫描训练集,其建模能力直接取决于训练数据中包含的可变性。因此,为了提高 3DMM 的描述能力,建立具有足够多样性的异质扫描之间的密集对应关系,无论是在身份、种族还是表情方面,都变得至关重要。在本文中,我们提出了一种全自动方法,利用 3DMM 将其密集的语义注释转移到原始 3D 人脸,在它们之间建立密集的对应关系。我们提出了一种新的公式,用于学习一组具有局部支持的稀疏变形分量,这些分量与原始的非刚性变形算法一起,使 3DMM 能够精确地拟合未见过的人脸并转移其语义注释。我们广泛地实验了我们的方法,表明它可以有效地推广到高度多样化的样本,并在存在复杂表情的情况下准确地建立密集对应关系。通过将三个大型数据集结合在一起获得的 9000 多个完全注册的扫描,构建一个异构的、大规模的 3DMM 来证明密集注册的准确性。