Suppr超能文献

活性流体的精确可解模型中的压力。

Pressure in an exactly solvable model of active fluid.

机构信息

Scuola di Scienze e Tecnologie, Università di Camerino, Via Madonna delle Carceri, 62032 Camerino, INFN Perugia, Italy.

NANOTEC-CNR, Institute of Nanotechnology, Soft and Living Matter Laboratory, Piazzale A. Moro 2, I-00185 Roma, Italy.

出版信息

J Chem Phys. 2017 Jul 14;147(2):024903. doi: 10.1063/1.4991731.

Abstract

We consider the pressure in the steady-state regime of three stochastic models characterized by self-propulsion and persistent motion and widely employed to describe the behavior of active particles, namely, the Active Brownian particle (ABP) model, the Gaussian colored noise (GCN) model, and the unified colored noise approximation (UCNA) model. Whereas in the limit of short but finite persistence time, the pressure in the UCNA model can be obtained by different methods which have an analog in equilibrium systems, in the remaining two models only the virial route is, in general, possible. According to this method, notwithstanding each model obeys its own specific microscopic law of evolution, the pressure displays a certain universal behavior. For generic interparticle and confining potentials, we derive a formula which establishes a correspondence between the GCN and the UCNA pressures. In order to provide explicit formulas and examples, we specialize the discussion to the case of an assembly of elastic dumbbells confined to a parabolic well. By employing the UCNA we find that, for this model, the pressure determined by the thermodynamic method coincides with the pressures obtained by the virial and mechanical methods. The three methods when applied to the GCN give a pressure identical to that obtained via the UCNA. Finally, we find that the ABP virial pressure exactly agrees with the UCNA and GCN results.

摘要

我们考虑了三个由自推进和持久运动特征的随机模型的稳态压力,这些模型被广泛用于描述活性粒子的行为,即主动布朗粒子(ABP)模型、高斯色噪声(GCN)模型和统一色噪声近似(UCNA)模型。虽然在短但有限的持久时间极限下,UCNA 模型中的压力可以通过在平衡系统中有类似物的不同方法获得,但在其余两个模型中,通常只有压心路径是可能的。根据这种方法,尽管每个模型都遵守其自身特定的微观演化规律,但压力表现出一定的普遍行为。对于一般的粒子间和约束势,我们推导出一个公式,该公式建立了 GCN 和 UCNA 压力之间的对应关系。为了提供显式公式和示例,我们将讨论专门针对限制在抛物阱中的弹性哑铃组装体的情况。通过使用 UCNA,我们发现对于该模型,热力学方法确定的压力与通过压心和力学方法获得的压力一致。当应用于 GCN 的三种方法给出的压力与通过 UCNA 获得的压力相同。最后,我们发现 ABP 压心压力与 UCNA 和 GCN 的结果完全一致。

相似文献

1
Pressure in an exactly solvable model of active fluid.
J Chem Phys. 2017 Jul 14;147(2):024903. doi: 10.1063/1.4991731.
2
Virial pressure in systems of spherical active Brownian particles.
Soft Matter. 2015 Sep 7;11(33):6680-91. doi: 10.1039/c5sm01412c.
4
Towards a statistical mechanical theory of active fluids.
Soft Matter. 2015 Dec 7;11(45):8768-81. doi: 10.1039/c5sm01718a.
5
Inertial self-propelled particles.
J Chem Phys. 2021 Jan 14;154(2):024902. doi: 10.1063/5.0030940.
6
Effective equilibrium states in mixtures of active particles driven by colored noise.
Phys Rev E. 2018 Jan;97(1-1):012601. doi: 10.1103/PhysRevE.97.012601.
7
Ideal bulk pressure of active Brownian particles.
Phys Rev E. 2016 Jun;93(6):062605. doi: 10.1103/PhysRevE.93.062605. Epub 2016 Jun 10.
8
Recovery of mechanical pressure in a gas of underdamped active dumbbells with Brownian noise.
Phys Rev E. 2017 May;95(5-1):052603. doi: 10.1103/PhysRevE.95.052603. Epub 2017 May 5.
9
Virial theorem and dynamical evolution of self-gravitating Brownian particles in an unbounded domain. II. Inertial models.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Jun;73(6 Pt 2):066104. doi: 10.1103/PhysRevE.73.066104. Epub 2006 Jun 1.

引用本文的文献

1
Statistical mechanics of transport processes in active fluids: Equations of hydrodynamics.
J Chem Phys. 2017 Nov 21;147(19):194109. doi: 10.1063/1.4997091.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验