Suppr超能文献

亚基因分辨率下癌症驱动基因检测算法的比较

Comparison of algorithms for the detection of cancer drivers at subgene resolution.

作者信息

Porta-Pardo Eduard, Kamburov Atanas, Tamborero David, Pons Tirso, Grases Daniela, Valencia Alfonso, Lopez-Bigas Nuria, Getz Gad, Godzik Adam

机构信息

Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA.

Department of Pathology and Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA.

出版信息

Nat Methods. 2017 Aug;14(8):782-788. doi: 10.1038/nmeth.4364. Epub 2017 Jul 17.

Abstract

Understanding genetic events that lead to cancer initiation and progression remains one of the biggest challenges in cancer biology. Traditionally, most algorithms for cancer-driver identification look for genes that have more mutations than expected from the average background mutation rate. However, there is now a wide variety of methods that look for nonrandom distribution of mutations within proteins as a signal for the driving role of mutations in cancer. Here we classify and review such subgene-resolution algorithms, compare their findings on four distinct cancer data sets from The Cancer Genome Atlas and discuss how predictions from these algorithms can be interpreted in the emerging paradigms that challenge the simple dichotomy between driver and passenger genes.

摘要

了解导致癌症起始和进展的遗传事件仍然是癌症生物学面临的最大挑战之一。传统上,大多数用于识别癌症驱动基因的算法都在寻找那些突变数量超过平均背景突变率预期的基因。然而,现在有各种各样的方法,它们将蛋白质内突变的非随机分布视为癌症中突变起驱动作用的信号。在这里,我们对这类亚基因分辨率算法进行分类和综述,比较它们在来自癌症基因组图谱的四个不同癌症数据集上的发现,并讨论如何在挑战驱动基因和乘客基因简单二分法的新兴范式中解释这些算法的预测结果。

相似文献

1
Comparison of algorithms for the detection of cancer drivers at subgene resolution.
Nat Methods. 2017 Aug;14(8):782-788. doi: 10.1038/nmeth.4364. Epub 2017 Jul 17.
2
LNDriver: identifying driver genes by integrating mutation and expression data based on gene-gene interaction network.
BMC Bioinformatics. 2016 Dec 23;17(Suppl 17):467. doi: 10.1186/s12859-016-1332-y.
3
The Discovery of Mutated Driver Pathways in Cancer: Models and Algorithms.
IEEE/ACM Trans Comput Biol Bioinform. 2018 May-Jun;15(3):988-998. doi: 10.1109/TCBB.2016.2640963. Epub 2016 Dec 15.
4
Identifying driver mutations from sequencing data of heterogeneous tumors in the era of personalized genome sequencing.
Brief Bioinform. 2014 Mar;15(2):244-55. doi: 10.1093/bib/bbt042. Epub 2013 Jul 1.
5
Impact of accumulated alterations in driver and passenger genes on response to radiation therapy.
Br J Radiol. 2020 May 1;93(1109):20190625. doi: 10.1259/bjr.20190625. Epub 2020 Feb 14.
6
Identifying Driver Interfaces Enriched for Somatic Missense Mutations in Tumors.
Methods Mol Biol. 2019;1907:51-72. doi: 10.1007/978-1-4939-8967-6_4.
7
Multi-OMICs and Genome Editing Perspectives on Liver Cancer Signaling Networks.
Biomed Res Int. 2016;2016:6186281. doi: 10.1155/2016/6186281. Epub 2016 Jun 14.
8
Multiscale mutation clustering algorithm identifies pan-cancer mutational clusters associated with pathway-level changes in gene expression.
PLoS Comput Biol. 2017 Feb 7;13(2):e1005347. doi: 10.1371/journal.pcbi.1005347. eCollection 2017 Feb.
9
[Lung cancer molecular testing, what role for Next Generation Sequencing and circulating tumor DNA].
Ann Pathol. 2016 Jan;36(1):80-93. doi: 10.1016/j.annpat.2015.11.012. Epub 2016 Jan 20.
10
CHASMplus Reveals the Scope of Somatic Missense Mutations Driving Human Cancers.
Cell Syst. 2019 Jul 24;9(1):9-23.e8. doi: 10.1016/j.cels.2019.05.005. Epub 2019 Jun 12.

引用本文的文献

1
Global analysis of actionable genomic alterations in thyroid cancer and precision-based pharmacogenomic strategies.
Front Pharmacol. 2025 Apr 14;16:1524623. doi: 10.3389/fphar.2025.1524623. eCollection 2025.
2
Worldwide analysis of actionable genomic alterations in lung cancer and targeted pharmacogenomic strategies.
Heliyon. 2024 Sep 5;10(17):e37488. doi: 10.1016/j.heliyon.2024.e37488. eCollection 2024 Sep 15.
3
CIBRA identifies genomic alterations with a system-wide impact on tumor biology.
Bioinformatics. 2024 Sep 1;40(Suppl 2):ii37-ii44. doi: 10.1093/bioinformatics/btae384.
4
Assessing the validity of driver gene identification tools for targeted genome sequencing data.
Bioinform Adv. 2024 May 23;4(1):vbae073. doi: 10.1093/bioadv/vbae073. eCollection 2024.
6
Cancer driver mutations: predictions and reality.
Trends Mol Med. 2023 Jul;29(7):554-566. doi: 10.1016/j.molmed.2023.03.007. Epub 2023 Apr 17.
7
Integration of artificial intelligence and precision oncology in Latin America.
Front Med Technol. 2022 Oct 13;4:1007822. doi: 10.3389/fmedt.2022.1007822. eCollection 2022.
8
Integrative study reveals the prognostic and immunotherapeutic value of CD274 and PDCD1LG2 in pan-cancer.
Front Genet. 2022 Oct 6;13:990301. doi: 10.3389/fgene.2022.990301. eCollection 2022.
9
Ectopic expression of meiotic cohesin generates chromosome instability in cancer cell line.
Proc Natl Acad Sci U S A. 2022 Oct 4;119(40):e2204071119. doi: 10.1073/pnas.2204071119. Epub 2022 Sep 30.
10
Cancer as an infective disease: the role of EVs in tumorigenesis.
Mol Oncol. 2023 Mar;17(3):390-406. doi: 10.1002/1878-0261.13316. Epub 2022 Oct 12.

本文引用的文献

1
Multiscale mutation clustering algorithm identifies pan-cancer mutational clusters associated with pathway-level changes in gene expression.
PLoS Comput Biol. 2017 Feb 7;13(2):e1005347. doi: 10.1371/journal.pcbi.1005347. eCollection 2017 Feb.
2
3
Phenotypic Characterization of a Comprehensive Set of MAPK1/ERK2 Missense Mutants.
Cell Rep. 2016 Oct 18;17(4):1171-1183. doi: 10.1016/j.celrep.2016.09.061.
4
Protein-structure-guided discovery of functional mutations across 19 cancer types.
Nat Genet. 2016 Aug;48(8):827-37. doi: 10.1038/ng.3586. Epub 2016 Jun 13.
5
Exome-Scale Discovery of Hotspot Mutation Regions in Human Cancer Using 3D Protein Structure.
Cancer Res. 2016 Jul 1;76(13):3719-31. doi: 10.1158/0008-5472.CAN-15-3190. Epub 2016 Apr 28.
7
Pan-Cancer Analysis of Mutation Hotspots in Protein Domains.
Cell Syst. 2015 Sep 23;1(3):197-209. doi: 10.1016/j.cels.2015.08.014.
8
LowMACA: exploiting protein family analysis for the identification of rare driver mutations in cancer.
BMC Bioinformatics. 2016 Feb 9;17:80. doi: 10.1186/s12859-016-0935-7.
9
mutation3D: Cancer Gene Prediction Through Atomic Clustering of Coding Variants in the Structural Proteome.
Hum Mutat. 2016 May;37(5):447-56. doi: 10.1002/humu.22963. Epub 2016 Feb 18.
10
Germline PARP4 mutations in patients with primary thyroid and breast cancers.
Endocr Relat Cancer. 2016 Mar;23(3):171-9. doi: 10.1530/ERC-15-0359. Epub 2015 Dec 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验