Suppr超能文献

低MACA:利用蛋白质家族分析来识别癌症中的罕见驱动突变。

LowMACA: exploiting protein family analysis for the identification of rare driver mutations in cancer.

作者信息

Melloni Giorgio E M, de Pretis Stefano, Riva Laura, Pelizzola Mattia, Céol Arnaud, Costanza Jole, Müller Heiko, Zammataro Luca

机构信息

Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Via Adamello 16, 20139, Milan, Italy.

出版信息

BMC Bioinformatics. 2016 Feb 9;17:80. doi: 10.1186/s12859-016-0935-7.

Abstract

BACKGROUND

The increasing availability of resequencing data has led to a better understanding of the most important genes in cancer development. Nevertheless, the mutational landscape of many tumor types is heterogeneous and encompasses a long tail of potential driver genes that are systematically excluded by currently available methods due to the low frequency of their mutations. We developed LowMACA (Low frequency Mutations Analysis via Consensus Alignment), a method that combines the mutations of various proteins sharing the same functional domains to identify conserved residues that harbor clustered mutations in multiple sequence alignments. LowMACA is designed to visualize and statistically assess potential driver genes through the identification of their mutational hotspots.

RESULTS

We analyzed the Ras superfamily exploiting the known driver mutations of the trio K-N-HRAS, identifying new putative driver mutations and genes belonging to less known members of the Rho, Rab and Rheb subfamilies. Furthermore, we applied the same concept to a list of known and candidate driver genes, and observed that low confidence genes show similar patterns of mutation compared to high confidence genes of the same protein family.

CONCLUSIONS

LowMACA is a software for the identification of gain-of-function mutations in putative oncogenic families, increasing the amount of information on functional domains and their possible role in cancer. In this context LowMACA emphasizes the role of genes mutated at low frequency otherwise undetectable by classical single gene analysis. LowMACA is an R package available at http://www.bioconductor.org/packages/release/bioc/html/LowMACA.html. It is also available as a GUI standalone downloadable at: https://cgsb.genomics.iit.it/wiki/projects/LowMACA.

摘要

背景

重测序数据的日益普及使得人们对癌症发展中最重要的基因有了更好的理解。然而,许多肿瘤类型的突变图谱是异质性的,包含了一长串潜在的驱动基因,由于其突变频率低,目前可用的方法会系统性地将它们排除在外。我们开发了LowMACA(通过一致性比对进行低频突变分析),这是一种将共享相同功能域的各种蛋白质的突变结合起来,以识别在多序列比对中含有成簇突变的保守残基的方法。LowMACA旨在通过识别潜在驱动基因的突变热点来对其进行可视化和统计评估。

结果

我们利用K-N-HRAS三联体的已知驱动突变分析了Ras超家族,鉴定出了新的假定驱动突变以及属于Rho、Rab和Rheb亚家族中较不为人知成员的基因。此外,我们将相同的概念应用于已知和候选驱动基因列表,并观察到与同一蛋白家族的高可信度基因相比,低可信度基因显示出相似的突变模式。

结论

LowMACA是一款用于识别假定致癌家族中功能获得性突变的软件,增加了关于功能域及其在癌症中可能作用的信息量。在这种情况下,LowMACA强调了低频突变基因的作用,否则这些基因通过经典的单基因分析是无法检测到的。LowMACA是一个R包,可在http://www.bioconductor.org/packages/release/bioc/html/LowMACA.html获取。它也可以作为独立的图形用户界面下载,网址为:https://cgsb.genomics.iit.it/wiki/projects/LowMACA

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c697/4748640/9b3b83580398/12859_2016_935_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验