Department of Chemical and Biomolecular Engineering, ‡Materials Science and Engineering, and §KAIST Institute for the Nanocentury, Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 305-701, South Korea.
ACS Nano. 2017 Aug 22;11(8):7821-7828. doi: 10.1021/acsnano.7b01783. Epub 2017 Jul 19.
Springtails, insects which breathe through their skins, possess mushroom-shaped nanostructures. As doubly re-entrant geometry in the mushroom head enhances the resistance against liquid invasion, the springtails have robust, liquid-free omniphobic skins. Although omniphobic surfaces are promising for various applications, it remains an important challenge to mimic the structural feature of springtails. This paper presents a pragmatic method to create doubly re-entrant nanostructures and robust superomniphobic surfaces by exploiting localized photofluidization of azopolymers. Irradiation of circularly polarized light reconfigures azopolymer micropillars to have a mushroom-like head with a doubly re-entrant nanogeometry through protrusion and inward bending of polymer film from the top edge. The light-driven reconfigured micropillars facilitate the pining of triple line as the springtails do. In particular, the unique geometry exhibits superomniphobicity even for liquids whose equilibrium contact angles are almost zero in the presence of a practical level of external pressure. In addition, the simple fabrication process is highly reproducible, scalable, and compatible with various substrate materials including flexible polymeric film. Our results suggest that our photofluidization technology will provide a practical route to develop robust superomniphobic surfaces.
跳虫是一种通过皮肤呼吸的昆虫,它们拥有蘑菇形状的纳米结构。由于蘑菇状头部的双重内凹几何形状增强了对液体入侵的阻力,跳虫拥有坚固、无液体的全憎水性皮肤。虽然全憎水性表面在各种应用中很有前景,但模仿跳虫的结构特征仍然是一个重要的挑战。本文提出了一种实用的方法,通过利用局部光流变法来创建双重内凹纳米结构和坚固的超憎水表面。圆偏振光的照射使聚合物微柱重新配置为具有蘑菇状头部的形状,其纳米几何形状具有双重内凹,这是通过从顶部边缘突出和向内弯曲聚合物膜来实现的。光驱动的重新配置微柱有助于像跳虫一样钉住三线。特别是,即使在存在实际水平的外部压力的情况下,对于平衡接触角几乎为零的液体,这种独特的几何形状也表现出超憎水性。此外,简单的制造工艺具有高度的可重复性、可扩展性,并且与包括柔性聚合物膜在内的各种基底材料兼容。我们的结果表明,我们的光流变法将为开发坚固的超憎水表面提供一种实用的途径。