Suppr超能文献

同心管机器人的自适应非参数运动学建模

Adaptive Nonparametric Kinematic Modeling of Concentric Tube Robots.

作者信息

Fagogenis Georgios, Bergeles Christos, Dupont Pierre E

机构信息

Department of Cardiovascular Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.

Translational Imaging Group, Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, UCL, London, NW1 2HE, United Kingdom.

出版信息

Rep U S. 2016 Oct;2016:4324-4329. doi: 10.1109/IROS.2016.7759636. Epub 2016 Dec 1.

Abstract

Concentric tube robots comprise telescopic precurved elastic tubes. The robot's tip and shape are controlled via relative tube motions, tube rotations and translations. Non-linear interactions between the tubes, friction and torsion, as well as uncertainty in the physical properties of the tubes themselves, the Young's modulus, curvature, or stiffness, hinder accurate kinematic modelling. In this paper, we present a machine-learning-based methodology for kinematic modelling of concentric tube robots and model adaptation. Our approach is based on Locally Weighted Projection Regression (LWPR). The model comprises an ensemble of linear models, each of which locally approximates the original complex kinematic relation. LWPR can accommodate for model deviations by adjusting the respective local models at run-time, resulting in an adaptive kinematics framework. We evaluated our approach on data gathered from a three-tube robot, and report high accuracy across the robot's configuration space.

摘要

同心管机器人由可伸缩的预弯曲弹性管组成。机器人的尖端和形状通过管的相对运动、管的旋转和平移来控制。管之间的非线性相互作用、摩擦和扭转,以及管本身物理特性(杨氏模量、曲率或刚度)的不确定性,阻碍了精确的运动学建模。在本文中,我们提出了一种基于机器学习的同心管机器人运动学建模和模型自适应方法。我们的方法基于局部加权投影回归(LWPR)。该模型由一组线性模型组成,每个线性模型在局部逼近原始的复杂运动学关系。LWPR可以通过在运行时调整各自的局部模型来适应模型偏差,从而形成一个自适应运动学框架。我们在从一个三管机器人收集的数据上评估了我们的方法,并报告了在机器人配置空间中的高精度。

相似文献

1
Adaptive Nonparametric Kinematic Modeling of Concentric Tube Robots.
Rep U S. 2016 Oct;2016:4324-4329. doi: 10.1109/IROS.2016.7759636. Epub 2016 Dec 1.
2
Quasistatic Modeling of Concentric Tube Robots with External Loads.
Rep U S. 2010 Dec 3;2010:2325-2332. doi: 10.1109/IROS.2010.5651240.
3
Design and Control of Concentric-Tube Robots.
IEEE Trans Robot. 2010 Apr 1;26(2):209-225. doi: 10.1109/TRO.2009.2035740.
4
Modeling Tube Clearance and Bounding the Effect of Friction in Concentric Tube Robot Kinematics.
IEEE Trans Robot. 2019 Apr;35(2):353-370. doi: 10.1109/TRO.2018.2878906. Epub 2018 Nov 14.
6
A Motion Planning Approach to Automatic Obstacle Avoidance during Concentric Tube Robot Teleoperation.
IEEE Int Conf Robot Autom. 2015 May;2015:2361-2367. doi: 10.1109/ICRA.2015.7139513.
7
Friction Modeling in Concentric Tube Robots.
IEEE Int Conf Robot Autom. 2011:1139-1146. doi: 10.1109/ICRA.2011.5980347.
8
Investigating exploration for deep reinforcement learning of concentric tube robot control.
Int J Comput Assist Radiol Surg. 2020 Jul;15(7):1157-1165. doi: 10.1007/s11548-020-02194-z. Epub 2020 Jun 6.
9
Optimizing Design Parameters for Sets of Concentric Tube Robots using Sampling-based Motion Planning.
Rep U S. 2015 Sep 28;2015:4381-4387. doi: 10.1109/IROS.2015.7353999.
10
A Dynamic Model for Concentric Tube Robots.
IEEE Trans Robot. 2020 Dec;36(6):1704-1718. doi: 10.1109/TRO.2020.3000290. Epub 2020 Jul 27.

引用本文的文献

1
Quasi-static Path Planning for Continuum Robots By Sampling on Implicit Manifold.
IEEE Int Conf Robot Autom. 2024 May;2024:8728-8734. doi: 10.1109/icra57147.2024.10611372. Epub 2024 Aug 8.
2
A Data-Driven Model with Hysteresis Compensation for IRIS Robot.
Int Symp Med Robot. 2024 Jun;2024. doi: 10.1109/ismr63436.2024.10585958. Epub 2024 Jul 12.
3
Exceeding traditional curvature limits of concentric tube robots through redundancy resolution.
Int J Rob Res. 2024 Jan;43(1):53-68. doi: 10.1177/02783649231202548. Epub 2023 Nov 7.
4
RRT*-based Path Planning for Continuum Arms.
IEEE Robot Autom Lett. 2022 Jul;7(3):6830-6837. doi: 10.1109/lra.2022.3174257. Epub 2022 May 11.
5
Learning the Complete Shape of Concentric Tube Robots.
IEEE Trans Med Robot Bionics. 2020 May;2(2):140-147. doi: 10.1109/tmrb.2020.2974523. Epub 2020 Feb 19.
6
Optimizing Tube Precurvature to Enhance Elastic Stability of Concentric Tube Robots.
IEEE Trans Robot. 2017 Feb;33(1):22-37. doi: 10.1109/TRO.2016.2622278. Epub 2016 Nov 22.
7
Real-time Adaptive Kinematic Model Estimation of Concentric Tube Robots.
Rep U S. 2015 Sep-Oct;2015:3214-3219. doi: 10.1109/IROS.2015.7353823.
8
A Wrist for Needle-Sized Surgical Robots.
IEEE Int Conf Robot Autom. 2015 May;2015:1776-1781. doi: 10.1109/ICRA.2015.7139428.
9
Concentric Tube Robot Design and Optimization Based on Task and Anatomical Constraints.
IEEE Trans Robot. 2015 Feb 3;31(1):67-84. doi: 10.1109/TRO.2014.2378431.

本文引用的文献

1
Hand-held transendoscopic robotic manipulators: A transurethral laser prostate surgery case study.
Int J Rob Res. 2015 Nov;34(13):1559-1572. doi: 10.1177/0278364915585397. Epub 2015 Jul 28.
2
Real-time Adaptive Kinematic Model Estimation of Concentric Tube Robots.
Rep U S. 2015 Sep-Oct;2015:3214-3219. doi: 10.1109/IROS.2015.7353823.
3
Optimizing Design Parameters for Sets of Concentric Tube Robots using Sampling-based Motion Planning.
Rep U S. 2015 Sep 28;2015:4381-4387. doi: 10.1109/IROS.2015.7353999.
4
A Motion Planning Approach to Automatic Obstacle Avoidance during Concentric Tube Robot Teleoperation.
IEEE Int Conf Robot Autom. 2015 May;2015:2361-2367. doi: 10.1109/ICRA.2015.7139513.
5
Concentric Tube Robot Design and Optimization Based on Task and Anatomical Constraints.
IEEE Trans Robot. 2015 Feb 3;31(1):67-84. doi: 10.1109/TRO.2014.2378431.
6
Equilibrium Conformations of Concentric-tube Continuum Robots.
Int J Rob Res. 2010 Sep 1;29(10):1263-1280. doi: 10.1177/0278364910367543.
7
A Telerobotic System for Transnasal Surgery.
IEEE ASME Trans Mechatron. 2013 Jun 19;19(3):996-1006. doi: 10.1109/TMECH.2013.2265804.
8
Percutaneous intracardiac beating-heart surgery using metal MEMS tissue approximation tools.
Int J Rob Res. 2012 Aug 1;31(9):1081-1093. doi: 10.1177/0278364912443718.
9
Friction Modeling in Concentric Tube Robots.
IEEE Int Conf Robot Autom. 2011:1139-1146. doi: 10.1109/ICRA.2011.5980347.
10
A Geometrically Exact Model for Externally Loaded Concentric-Tube Continuum Robots.
IEEE Trans Robot. 2010;26(5):769-780. doi: 10.1109/TRO.2010.2062570.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验