Esfandiari Mojtaba, Zhou Yanlin, Dehghani Shervin, Hadi Muhammad, Munawar Adnan, Phalen Henry, Usevitch David E, Gehlbach Peter, Iordachita Iulian
Department of Mechanical Engineering and Laboratory for Computational Sensing and Robotics, Johns Hopkins University, Baltimore, MD, 21218, USA.
Department of Computer Science, Technische Universität München, München 85748 Germany.
Int Symp Med Robot. 2024 Jun;2024. doi: 10.1109/ismr63436.2024.10585958. Epub 2024 Jul 12.
Retinal microsurgery is a high-precision surgery performed on a delicate tissue requiring the skill of highly trained surgeons. Given the restricted range of instrument motion in the confined intraocular space, snake-like robots may prove to be a promising technology to provide surgeons with greater flexibility, dexterity, and positioning accuracy during retinal procedures such as retinal vein cannulation and epiretinal membrane peeling. Kinematics modeling of these robots is an essential step toward accurate position control. Unlike conventional manipulators, modeling these robots does not follow a straightforward method due to their complex mechanical structure and actuation mechanisms. The hysteresis problem can especially impact the positioning accuracy significantly in wire-driven snake-like robots. In this paper, we propose a data-driven kinematics model using a probabilistic Gaussian mixture model (GMM) and Gaussian mixture regression (GMR) approach with a hysteresis compensation algorithm. Experimental results on the two-degree-of-freedom (DOF) integrated robotic intraocular snake (IRIS) show that the proposed model with the hysteresis compensation can predict the snake tip bending angle for pitch and yaw with 0.45° and 0.39° root mean square error (RMSE), respectively. This results in overall 60% and 70% improvements of accuracy for yaw and pitch over the same model without the hysteresis compensation.
视网膜显微手术是在精细组织上进行的高精度手术,需要训练有素的外科医生的技能。鉴于在有限的眼内空间中器械运动范围受限,蛇形机器人可能被证明是一种很有前途的技术,可在视网膜静脉插管和视网膜前膜剥离等视网膜手术过程中为外科医生提供更大的灵活性、灵巧性和定位精度。这些机器人的运动学建模是实现精确位置控制的关键一步。与传统操纵器不同,由于其复杂的机械结构和驱动机制,对这些机器人进行建模并非采用直接的方法。滞后问题尤其会对线驱动蛇形机器人的定位精度产生重大影响。在本文中,我们提出了一种数据驱动的运动学模型,该模型使用概率高斯混合模型(GMM)和高斯混合回归(GMR)方法以及滞后补偿算法。在两自由度(DOF)集成机器人眼内蛇(IRIS)上的实验结果表明,所提出的带有滞后补偿的模型可以分别以0.45°和0.39°的均方根误差(RMSE)预测蛇形末端在俯仰和偏航方向上的弯曲角度。与没有滞后补偿的相同模型相比,这使得偏航和俯仰方向的精度分别总体提高了60%和70%。