Orazi Giulia, O'Toole George A
Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA.
Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
mBio. 2017 Jul 18;8(4):e00873-17. doi: 10.1128/mBio.00873-17.
The airways of cystic fibrosis (CF) patients have thick mucus, which fosters chronic, polymicrobial infections. and are two of the most prevalent respiratory pathogens in CF patients. In this study, we tested whether influences the susceptibility of to frontline antibiotics used to treat CF lung infections. Using our coculture model, we observed that addition of supernatants to biofilms grown either on epithelial cells or on plastic significantly decreased the susceptibility of to vancomycin. Mutant analyses showed that 2--heptyl-4-hydroxyquinoline -oxide (HQNO), a component of the quinolone signal (PQS) system, protects from the antimicrobial activity of vancomycin. Similarly, the siderophores pyoverdine and pyochelin also contribute to the ability of to protect from vancomycin, as did growth under anoxia. Under our experimental conditions, HQNO, supernatant, and growth under anoxia decreased growth, likely explaining why this cell wall-targeting antibiotic is less effective. supernatant did not confer additional protection to slow-growing small colony variants. Importantly, supernatant protects from other inhibitors of cell wall synthesis as well as protein synthesis-targeting antibiotics in an HQNO- and siderophore-dependent manner. We propose a model whereby causes to shift to fermentative growth when these organisms are grown in coculture, leading to reduction in growth and decreased susceptibility to antibiotics targeting cell wall and protein synthesis. Cystic fibrosis (CF) lung infections are chronic and difficult to eradicate. and are two of the most prevalent respiratory pathogens in CF patients and are associated with poor patient outcomes. Both organisms adopt a biofilm mode of growth, which contributes to high tolerance to antibiotic treatment and the recalcitrant nature of these infections. Here, we show that exoproducts decrease the sensitivity of biofilm and planktonic populations to vancomycin, a frontline antibiotic used to treat methicillin-resistant in CF patients. also protects from other cell wall-active antibiotics as well as various classes of protein synthesis inhibitors. Thus, interspecies interactions can have dramatic and unexpected consequences on antibiotic sensitivity. This study underscores the potential impact of interspecies interactions on antibiotic efficacy in the context of complex, polymicrobial infections.
囊性纤维化(CF)患者的气道有浓稠的黏液,这会引发慢性的、多种微生物的感染。[具体两种微生物名称未给出]是CF患者中最常见的两种呼吸道病原体。在本研究中,我们测试了[其中一种微生物名称]是否会影响[另一种微生物名称]对用于治疗CF肺部感染的一线抗生素的敏感性。使用我们的[两种微生物名称]共培养模型,我们观察到,向上皮细胞或塑料上生长的[另一种微生物名称]生物膜中添加[其中一种微生物名称]的上清液,会显著降低[另一种微生物名称]对万古霉素的敏感性。突变分析表明,2-庚基-4-羟基喹啉-N-氧化物(HQNO),即[其中一种微生物名称]喹诺酮信号(PQS)系统的一个成分,可保护[另一种微生物名称]免受万古霉素的抗菌活性影响。同样,铁载体绿脓菌素和螯铁菌素也有助于[其中一种微生物名称]保护[另一种微生物名称]免受万古霉素影响,缺氧条件下的生长情况也是如此。在我们的实验条件下,HQNO、[其中一种微生物名称]上清液和缺氧条件下的生长会降低[另一种微生物名称]的生长,这可能解释了这种靶向细胞壁的抗生素效果较差的原因。[其中一种微生物名称]上清液并未为生长缓慢的[另一种微生物名称]小菌落变体提供额外的保护。重要的是,[其中一种微生物名称]上清液以HQNO和铁载体依赖的方式保护[另一种微生物名称]免受其他细胞壁合成抑制剂以及靶向蛋白质合成的抗生素的影响。我们提出了一个模型,即当这些生物体在共培养中生长时,[其中一种微生物名称]会导致[另一种微生物名称]转向发酵生长,从而导致[另一种微生物名称]生长减少,并降低对靶向细胞壁和蛋白质合成的抗生素的敏感性。囊性纤维化(CF)肺部感染是慢性的且难以根除。[具体两种微生物名称未给出]是CF患者中最常见的两种呼吸道病原体,并且与患者的不良预后相关。这两种生物体都采用生物膜生长模式,这导致它们对抗生素治疗具有高耐受性以及这些感染具有顽固性。在这里,我们表明[其中一种微生物名称]的胞外产物会降低[另一种微生物名称]生物膜和浮游菌群体对万古霉素的敏感性,万古霉素是用于治疗CF患者耐甲氧西林[另一种微生物名称]的一线抗生素。[其中一种微生物名称]还保护[另一种微生物名称]免受其他细胞壁活性抗生素以及各类蛋白质合成抑制剂的影响。因此,种间相互作用可能会对抗生素敏感性产生巨大且意想不到的影响。这项研究强调了在复杂的多种微生物感染背景下种间相互作用对抗生素疗效的潜在影响。