Suppr超能文献

制备聚多巴胺包覆的氧化石墨烯/FeO 印迹纳米粒子用于选择性去除水中的氟喹诺酮类抗生素。

Preparation of polydopamine-coated graphene oxide/FeO imprinted nanoparticles for selective removal of fluoroquinolone antibiotics in water.

机构信息

Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.

出版信息

Sci Rep. 2017 Jul 18;7(1):5735. doi: 10.1038/s41598-017-06303-y.

Abstract

Antibiotics in water have recently caused increasing concerns for public health and ecological environments. In this work, we demonstrated polydopamine-coated graphene oxide/FeO (PDA@GO/FeO) imprinted nanoparticles coupled with magnetic separation for fast and selective removal of fluoroquinolone antibiotics in water. The nanoparticles were prepared by the self-polymerization of dopamine using sarafloxacin as a template. The imprinted PDA film of 10~20 nm uniformly covered the surface of GO/FeO providing selective binding sites. The nanoparticles showed rapid binding and a large capacity (70.9 mg/g). The adsorption data fitted well the Langmuir and pseudo-second order kinetic equations. The nanoparticles could be easily separated by a magnet following the adsorption and then regenerated by simple washing for repetitive adsorptions. The nanoparticles were successfully used for the removal of fluoroquinolone antibiotics in seawater, with removal efficiencies of more than 95%. The proposed strategy has potentials for efficient removal of antibiotics in environmental water.

摘要

水中的抗生素最近引起了公众健康和生态环境的日益关注。在这项工作中,我们展示了聚多巴胺包覆的氧化石墨烯/FeO(PDA@GO/FeO)印迹纳米粒子与磁分离相结合,用于快速选择性去除水中的氟喹诺酮类抗生素。纳米粒子是通过多巴胺的自聚合作用,以沙拉沙星为模板制备的。印迹的 PDA 薄膜 10~20nm 均匀覆盖在 GO/FeO 表面,提供了选择性结合位点。纳米粒子表现出快速的结合和大容量(70.9mg/g)。吸附数据很好地符合朗缪尔和伪二阶动力学方程。吸附后,纳米粒子可以很容易地通过磁铁分离,然后通过简单的洗涤再生,用于重复吸附。纳米粒子成功地用于去除海水中的氟喹诺酮类抗生素,去除效率超过 95%。该策略有望高效去除环境水中的抗生素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd6d/5515973/b56f42c76548/41598_2017_6303_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验