Suppr超能文献

使用带有共轭寡电解质修饰的微生物装置的金-二氧化钛空心球增强析氢性能。

Enhancement in hydrogen evolution using Au-TiO hollow spheres with microbial devices modified with conjugated oligoelectrolytes.

作者信息

Ngaw Chee Keong, Wang Victor Bochuan, Liu Zhengyi, Zhou Yi, Kjelleberg Staffan, Zhang Qichun, Tan Timothy Thatt Yang, Loo Say Chye Joachim

机构信息

Energy Research Institute @ NTU (ERI@N), Interdisciplinary Graduate School, Nanyang Technological University, Singapore, Singapore.

Solar Fuels Laboratory, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore.

出版信息

NPJ Biofilms Microbiomes. 2015 Oct 21;1:15020. doi: 10.1038/npjbiofilms.2015.20. eCollection 2015.

Abstract

OBJECTIVE

Although photoelectrochemical (PEC) water splitting heralds the emergence of the hydrogen economy, the need for external bias and low efficiency stymies the widespread application of this technology. By coupling water splitting (in a PEC cell) to a microbial fuel cell (MFC) using as the biocatalyst, this work aims to successfully demonstrate a sustainable hybrid PEC-MFC platform functioning solely by biocatalysis and solar energy, at zero bias. Through further chemical modification of the photo-anode (in the PEC cell) and biofilm (in the MFC), the performance of the hybrid system is expected to improve in terms of the photocurrent generated and hydrogen evolved.

METHODS

The hybrid system constitutes the interconnected PEC cell with the MFC. Both PEC cell and MFC are typical two-chambered systems housing the anode and cathode. Au-TiO hollow spheres and conjugated oligoelectrolytes were synthesised chemically and introduced to the PEC cell and MFC, respectively. Hydrogen evolution measurements were performed in triplicates.

RESULTS

The hybrid PEC-MFC platform generated a photocurrent density of 0.35 mA/cm (~70× enhancement) as compared with the stand-alone P25 standard PEC cell (0.005 mA/cm) under one-sun illumination (100 mW/cm) at zero bias (0 V vs. Pt). This increase in photocurrent density was accompanied by continuous H production. No H was observed in the P25 standard PEC cell whereas H evolution rate was ~3.4 μmol/h in the hybrid system. The remarkable performance is attributed to the chemical modification of through the incorporation of novel conjugated oligoelectrolytes in the MFC as well as the lower recombination rate and higher photoabsorption capabilities in the Au-TiO hollow spheres electrode.

CONCLUSIONS

The combined strategy of photo-anode modification in PEC cells and chemically modified MFCs shows great promise for future exploitation of such synergistic effects between MFCs and semiconductor-based PEC water splitting.

摘要

目的

尽管光电化学(PEC)水分解预示着氢经济的兴起,但对外部偏压的需求和低效率阻碍了该技术的广泛应用。通过使用生物催化剂将水分解(在PEC电池中)与微生物燃料电池(MFC)耦合,本研究旨在成功展示一个仅通过生物催化和太阳能运行的可持续混合PEC-MFC平台,且无需偏压。通过对光阳极(在PEC电池中)和生物膜(在MFC中)进行进一步的化学修饰,有望提高混合系统在光电流产生和氢气析出方面的性能。

方法

混合系统由相互连接的PEC电池和MFC组成。PEC电池和MFC均为典型的两腔系统,分别容纳阳极和阴极。通过化学合成制备了金-二氧化钛空心球和共轭低聚物电解质,并分别引入PEC电池和MFC中。析氢测量重复进行三次。

结果

在零偏压(相对于铂为0 V)、一个太阳光照射(100 mW/cm²)下,混合PEC-MFC平台产生的光电流密度为0.35 mA/cm²(提高了约70倍),而独立的P25标准PEC电池(0.005 mA/cm²)。光电流密度的增加伴随着持续的氢气产生。在P25标准PEC电池中未观察到氢气产生,而在混合系统中氢气析出速率约为3.4 μmol/h。这种显著的性能归因于通过在MFC中引入新型共轭低聚物电解质对其进行的化学修饰,以及金-二氧化钛空心球电极中较低的复合率和较高的光吸收能力。

结论

PEC电池中的光阳极修饰和化学修饰的MFC相结合的策略,对于未来利用MFC与基于半导体的PEC水分解之间的这种协同效应具有巨大的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c123/5515218/5db560e06c78/npjbiofilms201520-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验