Suppr超能文献

采用载体两性电解质pH梯度的表面等电聚焦(sIEF)。

Surface isoelectric focusing (sIEF) with carrier ampholyte pH gradient.

作者信息

Wang Zhichao, Ivory Cornelius, Minerick Adrienne R

机构信息

Department of Chemical Engineering, Michigan Technological University, Houghton, MI, USA.

Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA.

出版信息

Electrophoresis. 2017 Oct;38(20):2565-2575. doi: 10.1002/elps.201600565. Epub 2017 Aug 21.

Abstract

Isoelectric focusing (IEF) is a powerful tool for amphoteric protein separations because of high sensitivity, bio-compatibility, and reduced complexity compared to chromatography or mechanical separation techniques. IEF miniaturization is attractive because it enables rapid analysis, easier adaptation to point of care applications, and smaller sample demands. However, existing small-scale IEF tools have not yet been able to analyze single protein spots from array libraries, which are ubiquitous in many pharmaceutical discovery and screening protocols. Thus, we introduce an in situ, novel, miniaturized protein analysis approach that we have termed surface isoelectric focusing (sIEF). Low volume printed sIEF gels can be run at length scales of ∼300 μm, utilize ∼0.9 ng of protein with voltages below 10 V. Further, the sIEF device platform is so simple that it can be integrated with protein library arrays to reduce cost; devices demonstrate reusability above 50 uses. An acrylamide monomer solution containing broad-range carrier ampholytes was microprinted with a Nano eNabler between micropatterned gold electrodes spaced 300 μm apart on a glass slide. The acrylamide gel was polymerized in situ followed by protein loading via printed diffusional exchange. A pH gradient formed via carrier ampholyte stacking when electrodes were energized; the gradient was verified using ratiometric pH-sensitive FITC/TRITC dyes. Green fluorescent protein (GFP) and R-phycoerythrin (R-PE) were utilized both as pI markers and to test sIEF performance as a function of electric field strength and ampholyte concentration. Factors hampering sIEF included cathodic drift and pH gradient compression, but were reduced by co-printing non-ionic Synperonic® F-108 surfactant to reduce protein-gel interactions. sIEF gels achieved protein separations in <10 min yielding bands < 50 μm wide with peak capacities of ∼8 and minimum pI differences from 0.12 to 0.14. This new sIEF technique demonstrated comparable focusing at ∼100 times smaller dimensions than any previous IEF. Further, sample volumes required were reduced four orders of magnitude from 20 μL for slab gel IEF to 0.002 μL for sIEF. In summary, sIEF advantages include smaller volumes, reduced power consumption, and microchip surface accessibility to focused bands along with equivalent separation resolutions to prior IEF tools. These attributes position this new technology for rapid, in situ protein library analysis in clinical and pharmaceutical settings.

摘要

等电聚焦(IEF)是用于两性蛋白质分离的强大工具,因为与色谱法或机械分离技术相比,它具有高灵敏度、生物相容性以及更低的复杂性。IEF小型化具有吸引力,因为它能够实现快速分析,更易于适应即时检测应用,并且对样品的需求量更小。然而,现有的小规模IEF工具尚无法分析阵列文库中的单个蛋白质斑点,而阵列文库在许多药物发现和筛选方案中普遍存在。因此,我们引入了一种原位、新颖的小型化蛋白质分析方法,我们将其称为表面等电聚焦(sIEF)。低体积的打印sIEF凝胶可以在约300μm的长度尺度上运行,使用电压低于10V时约0.9ng的蛋白质。此外,sIEF设备平台非常简单,可以与蛋白质文库阵列集成以降低成本;该设备展示了超过50次使用的可重复使用性。一种含有宽范围载体两性电解质的丙烯酰胺单体溶液通过Nano eNabler微打印在载玻片上间距为300μm的微图案化金电极之间。丙烯酰胺凝胶原位聚合,随后通过打印的扩散交换加载蛋白质。通电时,通过载体两性电解质堆积形成pH梯度;使用比率型pH敏感的FITC/TRITC染料验证了该梯度。绿色荧光蛋白(GFP)和R-藻红蛋白(R-PE)既用作等电点标记物,也用于测试sIEF作为电场强度和两性电解质浓度函数的性能。阻碍sIEF的因素包括阴极漂移和pH梯度压缩,但通过共打印非离子型Synperonic® F-108表面活性剂以减少蛋白质与凝胶的相互作用,这些因素得到了缓解。sIEF凝胶在不到10分钟内实现了蛋白质分离,产生了宽度小于50μm的条带,峰容量约为8,最小等电点差异为0.12至0.14。这种新的sIEF技术在尺寸约为以前任何IEF的100分之一的情况下展示了相当的聚焦效果。此外,所需的样品体积从平板凝胶IEF的20μL减少了四个数量级,降至sIEF的0.002μL。总之,sIEF的优点包括体积更小、功耗更低、微芯片表面可接近聚焦条带,以及与先前IEF工具相当的分离分辨率。这些特性使这项新技术适用于临床和制药环境中的快速原位蛋白质文库分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验