a CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health , Chinese Academy of Sciences , Guangzhou , China ; Guangzhou Medical University , Guangzhou , China.
b Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health , University of Chinese Academy of Sciences, Chinese Academy of Sciences , Guangzhou , China.
Autophagy. 2017 Sep 2;13(9):1543-1555. doi: 10.1080/15548627.2017.1338545. Epub 2017 Jul 19.
Induced pluripotent stem cells (iPSCs) have fewer and immature mitochondria than somatic cells and mainly rely on glycolysis for energy source. During somatic cell reprogramming, somatic mitochondria and other organelles get remodeled. However, events of organelle remodeling and interaction during somatic cell reprogramming have not been extensively explored. We show that both SKP/SKO (Sox2, Klf4, Pou5f1/Oct4) and SKPM/SKOM (SKP/SKO plus Myc/c-Myc) reprogramming lead to decreased mitochondrial mass but with different kinetics and by divergent pathways. Rapid, MYC/c-MYC-induced cell proliferation may function as the main driver of mitochondrial decrease in SKPM/SKOM reprogramming. In SKP/SKO reprogramming, however, mitochondrial mass initially increases and subsequently decreases via mitophagy. This mitophagy is dependent on the mitochondrial outer membrane receptor BNIP3L/NIX but not on mitochondrial membrane potential (ΔΨ) dissipation, and this SKP/SKO-induced mitophagy functions in an important role during the reprogramming process. Furthermore, endosome-related RAB5 is involved in mitophagosome formation in SKP/SKO reprogramming. These results reveal a novel role of mitophagy in reprogramming that entails the interaction between mitochondria, macroautophagy/autophagy and endosomes.
诱导多能干细胞(iPSCs)的线粒体比体细胞少且不成熟,主要依赖糖酵解作为能量来源。在体细胞重编程过程中,体细胞的线粒体和其他细胞器会发生重塑。然而,体细胞重编程过程中细胞器重塑和相互作用的事件尚未得到广泛探索。我们发现,SKP/SKO(Sox2、Klf4、Pou5f1/Oct4)和 SKPM/SKOM(SKP/SKO 加上 Myc/c-Myc)重编程均导致线粒体质量减少,但动力学和途径不同。快速的、MYC/c-Myc 诱导的细胞增殖可能是 SKPM/SKOM 重编程中线粒体减少的主要驱动因素。然而,在 SKP/SKO 重编程中,线粒体质量最初通过自噬增加,随后通过自噬减少。这种自噬依赖于线粒体外膜受体 BNIP3L/NIX,但不依赖于线粒体膜电位(ΔΨ)耗散,并且这种 SKP/SKO 诱导的自噬在重编程过程中发挥重要作用。此外,内体相关的 RAB5 参与了 SKP/SKO 重编程中的自噬体形成。这些结果揭示了自噬在重编程中的一个新作用,涉及线粒体、巨自噬/自噬和内体之间的相互作用。