Suppr超能文献

用于微生物生产大宗化学品的合成生物学与系统生物学

Synthetic and systems biology for microbial production of commodity chemicals.

作者信息

Chubukov Victor, Mukhopadhyay Aindrila, Petzold Christopher J, Keasling Jay D, Martín Héctor García

机构信息

Joint BioEnergy Institute, Emeryville, CA, USA.

Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.

出版信息

NPJ Syst Biol Appl. 2016 Apr 7;2:16009. doi: 10.1038/npjsba.2016.9. eCollection 2016.

Abstract

The combination of synthetic and systems biology is a powerful framework to study fundamental questions in biology and produce chemicals of immediate practical application such as biofuels, polymers, or therapeutics. However, we cannot yet engineer biological systems as easily and precisely as we engineer physical systems. In this review, we describe the path from the choice of target molecule to scaling production up to commercial volumes. We present and explain some of the current challenges and gaps in our knowledge that must be overcome in order to bring our bioengineering capabilities to the level of other engineering disciplines. Challenges start at molecule selection, where a difficult balance between economic potential and biological feasibility must be struck. Pathway design and construction have recently been revolutionized by next-generation sequencing and exponentially improving DNA synthesis capabilities. Although pathway optimization can be significantly aided by enzyme expression characterization through proteomics, choosing optimal relative protein expression levels for maximum production is still the subject of heuristic, non-systematic approaches. Toxic metabolic intermediates and proteins can significantly affect production, and dynamic pathway regulation emerges as a powerful but yet immature tool to prevent it. Host engineering arises as a much needed complement to pathway engineering for high bioproduct yields; and systems biology approaches such as stoichiometric modeling or growth coupling strategies are required. A final, and often underestimated, challenge is the successful scale up of processes to commercial volumes. Sustained efforts in improving reproducibility and predictability are needed for further development of bioengineering.

摘要

合成生物学与系统生物学的结合是一个强大的框架,可用于研究生物学中的基本问题,并生产具有直接实际应用价值的化学品,如生物燃料、聚合物或治疗药物。然而,我们目前还无法像设计物理系统那样轻松、精确地设计生物系统。在这篇综述中,我们描述了从目标分子的选择到扩大生产规模至商业产量的过程。我们提出并解释了当前一些知识上的挑战和差距,为了使我们的生物工程能力达到其他工程学科的水平,这些挑战和差距必须被克服。挑战始于分子选择,在这一过程中必须在经济潜力和生物学可行性之间达成艰难的平衡。下一代测序技术和不断指数级提升的DNA合成能力最近给途径设计与构建带来了变革。尽管通过蛋白质组学对酶表达进行表征可以显著辅助途径优化,但选择最佳的相对蛋白质表达水平以实现最大产量仍然是启发式、非系统性方法的研究课题。有毒的代谢中间体和蛋白质会显著影响产量,而动态途径调控作为一种强大但仍不成熟的工具,可用于预防这种情况。宿主工程作为提高生物产品产量的途径工程急需的补充而出现;并且需要诸如化学计量学建模或生长偶联策略等系统生物学方法。最后一个且常常被低估的挑战是成功地将生产过程扩大到商业规模。为了生物工程的进一步发展,需要持续努力提高可重复性和可预测性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/696b/5516863/b046e8b52a82/npjsba20169-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验