Liu Hongcheng, Dong Peng, Xing Lei
Department of Radiation Oncology, Stanford University School of Medicine, 875 Blake Wilbur Drive, Stanford, CA 94305-5847, United States of America.
Phys Med Biol. 2017 Jul 20;62(16):6428-6445. doi: 10.1088/1361-6560/aa75c0.
[Formula: see text]-minimization-based sparse optimization was employed to solve the beam angle optimization (BAO) in intensity-modulated radiation therapy (IMRT) planning. The technique approximates the exact BAO formulation with efficiently computable convex surrogates, leading to plans that are inferior to those attainable with recently proposed gradient-based greedy schemes. In this paper, we alleviate/reduce the nontrivial inconsistencies between the [Formula: see text]-based formulations and the exact BAO model by proposing a new sparse optimization framework based on the most recent developments in group variable selection. We propose the incorporation of the group-folded concave penalty (gFCP) as a substitution to the [Formula: see text]-minimization framework. The new formulation is then solved by a variation of an existing gradient method. The performance of the proposed scheme is evaluated by both plan quality and the computational efficiency using three IMRT cases: a coplanar prostate case, a coplanar head-and-neck case, and a noncoplanar liver case. Involved in the evaluation are two alternative schemes: the [Formula: see text]-minimization approach and the gradient norm method (GNM). The gFCP-based scheme outperforms both counterpart approaches. In particular, gFCP generates better plans than those obtained using the [Formula: see text]-minimization for all three cases with a comparable computation time. As compared to the GNM, the gFCP improves both the plan quality and computational efficiency. The proposed gFCP-based scheme provides a promising framework for BAO and promises to improve both planning time and plan quality.
基于[公式:见文本]最小化的稀疏优化方法被用于解决调强放射治疗(IMRT)计划中的射束角度优化(BAO)问题。该技术通过高效可计算的凸替代函数来近似精确的BAO公式,从而得到的计划比最近提出的基于梯度的贪婪算法所能得到的计划要差。在本文中,我们通过提出一种基于组变量选择最新进展的新稀疏优化框架,来减轻/减少基于[公式:见文本]的公式与精确BAO模型之间的显著不一致。我们建议引入组折叠凹惩罚(gFCP)来替代[公式:见文本]最小化框架。然后通过对现有梯度方法的一种变体来求解新的公式。使用三个IMRT病例:共面前列腺病例、共面头颈部病例和非共面肝脏病例,从计划质量和计算效率两方面评估了所提方案的性能。评估中涉及两种替代方案:[公式:见文本]最小化方法和梯度范数法(GNM)。基于gFCP的方案优于这两种对应方法。特别是,对于所有三种病例,gFCP在可比的计算时间内生成的计划比使用[公式:见文本]最小化得到的计划更好。与GNM相比,gFCP在计划质量和计算效率方面都有所提高。所提出的基于gFCP的方案为BAO提供了一个有前景的框架,并有望改善计划时间和计划质量。