Suppr超能文献

关于1-氯代金刚烷塑性相纯取向无序-无序转变背后的微观机制。

On the microscopic mechanism behind the purely orientational disorder-disorder transition in the plastic phase of 1-chloroadamantane.

作者信息

Vispa A, Monserrat D, Cuello G J, Fernandez-Alonso F, Mukhopadhyay S, Demmel F, Tamarit J Ll, Pardo L C

机构信息

Grup de Caracterització de Materials, Departament de Física, EEBE, Universitat Politècnica de Catalunya, Eduard Maristany 10, E-08019 Barcelona, Catalonia, Spain.

出版信息

Phys Chem Chem Phys. 2017 Aug 2;19(30):20259-20266. doi: 10.1039/c7cp03630b.

Abstract

Globular molecules of 1-chloroadamantane form a plastic phase in which the molecules rotate in a restrained way, but with their centers of mass forming a crystalline ordered lattice. Plastic phases can be regarded as test cases for the study of disordered phases since, contrary to what happens in the liquid phase, there is a lack of stochastic translational degrees of freedom. When the temperature is increased, a hump in the specific heat curve is observed indicating a change in the energetic footprint of the dynamics of the molecules. This change takes place without a change in the symmetry of the crystalline lattice, i.e. no first-order transition is observed between temperatures below and above the calorimetric hump. This implies that subtle changes in the dynamics of the disordered plastic phase concerning purely orientational degrees of freedom should appear at the thermodynamic anomaly. Accordingly, we describe, for the first time, the microscopic mechanisms behind a disorder-disorder transition through the analysis of neutron diffraction and QENS experiments. The results evince a change in the molecular rotational dynamics accompanied by a continuous change in density.

摘要

1-氯代金刚烷的球状分子形成一种塑性相,其中分子以受限的方式旋转,但其质心形成晶体有序晶格。塑性相可被视为研究无序相的测试案例,因为与液相中发生的情况相反,缺乏随机平移自由度。当温度升高时,比热曲线中会出现一个峰,表明分子动力学的能量特征发生了变化。这种变化发生时,晶格对称性没有改变,即在低于和高于量热峰的温度之间没有观察到一级相变。这意味着在热力学异常处,关于纯取向自由度的无序塑性相动力学应会出现细微变化。因此,我们首次通过对中子衍射和准弹性中子散射实验的分析,描述了无序-无序转变背后的微观机制。结果表明分子旋转动力学发生了变化,同时密度也在持续变化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验