Suppr超能文献

针对超高危标准的基本症状预测准确性的检查和多变量预测模型的测试:来自对精神病临床高危人群进行为期三年的前瞻性观察研究的证据。

Checking the predictive accuracy of basic symptoms against ultra high-risk criteria and testing of a multivariable prediction model: Evidence from a prospective three-year observational study of persons at clinical high-risk for psychosis.

机构信息

Department of Applied Psychology, Zurich University of Applied Sciences, Zurich, Switzerland.

Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of Psychiatry, Zurich, Switzerland.

出版信息

Eur Psychiatry. 2017 Sep;45:27-35. doi: 10.1016/j.eurpsy.2017.05.026. Epub 2017 Jun 3.

Abstract

BACKGROUND

The aim of this study was to critically examine the prognostic validity of various clinical high-risk (CHR) criteria alone and in combination with additional clinical characteristics.

METHODS

A total of 188 CHR positive persons from the region of Zurich, Switzerland (mean age 20.5 years; 60.2% male), meeting ultra high-risk (UHR) and/or basic symptoms (BS) criteria, were followed over three years. The test battery included the Structured Interview for Prodromal Syndromes (SIPS), verbal IQ and many other screening tools. Conversion to psychosis was defined according to ICD-10 criteria for schizophrenia (F20) or brief psychotic disorder (F23).

RESULTS

Altogether n=24 persons developed manifest psychosis within three years and according to Kaplan-Meier survival analysis, the projected conversion rate was 17.5%. The predictive accuracy of UHR was statistically significant but poor (area under the curve [AUC]=0.65, P<.05), whereas BS did not predict psychosis beyond mere chance (AUC=0.52, P=.730). Sensitivity and specificity were 0.83 and 0.47 for UHR, and 0.96 and 0.09 for BS. UHR plus BS achieved an AUC=0.66, with sensitivity and specificity of 0.75 and 0.56. In comparison, baseline antipsychotic medication yielded a predictive accuracy of AUC=0.62 (sensitivity=0.42; specificity=0.82). A multivariable prediction model comprising continuous measures of positive symptoms and verbal IQ achieved a substantially improved prognostic accuracy (AUC=0.85; sensitivity=0.86; specificity=0.85; positive predictive value=0.54; negative predictive value=0.97).

CONCLUSIONS

We showed that BS have no predictive accuracy beyond chance, while UHR criteria poorly predict conversion to psychosis. Combining BS with UHR criteria did not improve the predictive accuracy of UHR alone. In contrast, dimensional measures of both positive symptoms and verbal IQ showed excellent prognostic validity. A critical re-thinking of binary at-risk criteria is necessary in order to improve the prognosis of psychotic disorders.

摘要

背景

本研究旨在批判性地评估各种临床高风险(CHR)标准单独和联合其他临床特征的预后准确性。

方法

共纳入来自瑞士苏黎世地区的 188 名 CHR 阳性者(平均年龄 20.5 岁,60.2%为男性),符合超高风险(UHR)和/或基本症状(BS)标准,随访 3 年。测试组合包括前驱症状结构化访谈(SIPS)、言语智商和许多其他筛查工具。根据 ICD-10 精神分裂症(F20)或短暂精神病性障碍(F23)标准,将精神病转化定义为精神病。

结果

共有 24 人在三年内出现明显精神病,根据 Kaplan-Meier 生存分析,预计转化率为 17.5%。UHR 的预测准确性具有统计学意义,但较差(曲线下面积[AUC]=0.65,P<.05),而 BS 并不能预测精神病以外的机会(AUC=0.52,P=.730)。UHR 的敏感性和特异性分别为 0.83 和 0.47,BS 分别为 0.96 和 0.09。UHR+BS 的 AUC=0.66,敏感性和特异性分别为 0.75 和 0.56。相比之下,基线抗精神病药物的预测准确性为 AUC=0.62(敏感性=0.42;特异性=0.82)。一个包含阳性症状和言语智商连续测量的多变量预测模型实现了显著提高的预后准确性(AUC=0.85;敏感性=0.86;特异性=0.85;阳性预测值=0.54;阴性预测值=0.97)。

结论

我们表明,BS 除了机会之外没有预测准确性,而 UHR 标准则难以预测精神病转化。将 BS 与 UHR 标准结合并没有提高 UHR 单独的预测准确性。相比之下,阳性症状和言语智商的维度测量都显示出极好的预后价值。为了改善精神病的预后,有必要对二元风险标准进行批判性思考。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验