Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan.
Sci Rep. 2017 Jul 20;7(1):5999. doi: 10.1038/s41598-017-05805-z.
Direct growth of MoS nanowalls on vapor grown carbon nanofibers (VGCNFs) has been achieved using a microwave-assisted hydrothermal (MAH) method under an acidic condition. The acidic condition was obtained through the addition of an HCl aqueous solution. We demonstrate that the HCl not only modifies the pH value for limiting the growth rate but also leads to the formation of NaCl, which is the key for the direct and unique growth of MoS on the VGCNF surface. A growth mechanism is therefore proposed. The growth of MoS onto the high electrically conducting VGCNF creates a unique structure that not only reduces the aggregation of MoS but also improves the electrical conductivity of the resulting composite electrode. The MoS nanowall/VGCNF composite shows Csp as high as 248 F g at 5 mV s and excellent electrochemical stability with a retention of 96% after 1,000 cycles at a high charge rate of 200 mV s. The ease of composite fabrication and electrochemical stability suggest that the MoS nanowall/VGCNF composite is a promising candidate electrode material for supercapacitor.
采用微波辅助水热(MAH)法,在酸性条件下,直接在气相生长碳纤维(VGCNF)上生长 MoS 纳米墙。酸性条件是通过添加 HCl 水溶液获得的。我们证明,HCl 不仅可以调节 pH 值来限制生长速率,而且还可以导致 NaCl 的形成,这是 MoS 直接且独特地在 VGCNF 表面生长的关键。因此提出了一种生长机制。MoS 在高导电性 VGCNF 上的生长形成了一种独特的结构,不仅减少了 MoS 的聚集,而且提高了所得复合电极的导电性。MoS 纳米墙/VGCNF 复合材料在 5 mV s 时的 Csp 高达 248 F g,并且在 200 mV s 的高充电速率下循环 1000 次后仍具有 96%的优异电化学稳定性。复合材料的制备简单和电化学稳定性表明,MoS 纳米墙/VGCNF 复合材料是超级电容器有前途的候选电极材料。