Zhang Yanxi, Qiu Xinkai, Gordiichuk Pavlo, Soni Saurabh, Krijger Theodorus L, Herrmann Andreas, Chiechi Ryan C
Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
J Phys Chem C Nanomater Interfaces. 2017 Jul 13;121(27):14920-14928. doi: 10.1021/acs.jpcc.7b03853. Epub 2017 Jun 13.
This paper examines the relationship between mechanical deformation and the electronic properties of self-assembled monolayers (SAMs) of the oligothiophene 4-([2,2':5',2″:5″,2‴-quaterthiophen]-5-yl)butane-1-thiol (T4C4) in tunneling junctions using conductive probe atomic force microscopy (CP-AFM) and eutectic Ga-In (EGaIn). We compared shifts in conductivity, transition voltages of T4C4 with increasing AFM tip loading force to alkanethiolates. While these shifts result from an increasing tilt angle from penetration of the SAM by the AFM tip for the latter, we ascribe them to distortions of the π system present in T4C4, which is more mechanically robust than alkanethiolates of comparable length; SAMs comprising T4C4 shows about five times higher Young's modulus than alkanethiolates. Density functional theory calculations confirm that mechanical deformations shift the barrier height due to changes in the frontier orbitals caused by small rearrangements to the conformation of the quaterthiophene moiety. The mechanical robustness of T4C4 manifests as an increased tolerance to high bias in large-area EGaIn junctions suggesting that electrostatic pressure plays a significant role in the shorting of molecular junctions at high bias.
本文利用导电探针原子力显微镜(CP-AFM)和共晶镓铟(EGaIn)研究了隧道结中低聚噻吩4-([2,2':5',2″:5″,2‴-四噻吩]-5-基)丁烷-1-硫醇(T4C4)自组装单分子层(SAMs)的机械变形与电子性质之间的关系。我们将T4C4的电导率变化、随着原子力显微镜针尖加载力增加的转变电压与链烷硫醇盐进行了比较。对于链烷硫醇盐,这些变化是由于原子力显微镜针尖穿透SAM导致倾斜角增加引起的,而对于T4C4,我们将其归因于T4C4中存在的π体系的畸变,T4C4在机械上比长度相当的链烷硫醇盐更坚固;包含T4C4的SAMs的杨氏模量比链烷硫醇盐高约五倍。密度泛函理论计算证实,由于四噻吩部分构象的微小重排导致前沿轨道发生变化,机械变形会使势垒高度发生移动。T4C4的机械坚固性表现为在大面积EGaIn结中对高偏压的耐受性增加,这表明静电压力在高偏压下分子结的短路中起重要作用。