Ai Yong, Kovalchuk Andrii, Qiu Xinkai, Zhang Yanxi, Kumar Sumit, Wang Xintai, Kühnel Martin, Nørgaard Kasper, Chiechi Ryan C
Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands.
Zernike Institute for Advanced Materials , Nijenborgh 4 , 9747 AG Groningen , The Netherlands.
Nano Lett. 2018 Dec 12;18(12):7552-7559. doi: 10.1021/acs.nanolett.8b03042. Epub 2018 Nov 9.
This paper describes tunneling junctions comprising self-assembled monolayers that can be converted between resistor and diode functionality in-place. The rectification ratio is affected by the hydration of densely packed carboxylic acid groups at the interface between the top-contact and the monolayer. We studied this process by treatment with water and a water scavenger using three different top-contacts, eutectic Ga-In (EGaIn), conducting-probe atomic force microscopy (CP-AFM), and reduced graphene oxide (rGO), demonstrating that the phenomena is molecular in nature and is not platform-speciffc. We propose a mechanism in which the tunneling junctions convert to diode behavior through the lowering of the LUMO, which is suffcient to bring it close to resonance at positive bias, potentially assisted by a Stark shift. This shift in energy is supported by calculations and a change in polarization observed by X-ray photoelectron spectroscopy and Kelvin probe measurements. We demonstrate light-driven modulation using spiropyran as a photoacid, suggesting that any chemical process that is coupled to the release of small molecules that can tightly bind carboxylic acid groups can be used as an external stimulus to modulate rectification. The ability to convert a tunneling junction reversibly between a diode and a resistor via an effect that is intrinsic to the molecules in the junction extends the possible applications of Molecular Electronics to reconfigurable circuits and other new functionalities that do not have direct analogs in conventional semiconductor devices.
本文描述了一种由自组装单分子层构成的隧道结,其能够在原位实现电阻器和二极管功能之间的转换。整流比受顶部接触层与单分子层界面处密集堆积的羧酸基团水合作用的影响。我们使用三种不同的顶部接触层,即共晶镓铟(EGaIn)、导电探针原子力显微镜(CP-AFM)和还原氧化石墨烯(rGO),通过用水和吸水剂处理来研究这一过程,证明该现象本质上是分子层面的,且不依赖于特定平台。我们提出了一种机制,其中隧道结通过最低未占分子轨道(LUMO)的降低转变为二极管行为,这足以使其在正偏压下接近共振,可能受到斯塔克位移的辅助。这种能量变化得到了计算结果以及X射线光电子能谱和开尔文探针测量所观察到的极化变化的支持。我们展示了使用螺吡喃作为光酸的光驱动调制,这表明任何与能够紧密结合羧酸基团的小分子释放相关的化学过程都可以用作外部刺激来调制整流。通过结中分子固有的效应使隧道结在二极管和电阻器之间可逆转换的能力,将分子电子学的可能应用扩展到了可重构电路以及传统半导体器件中没有直接类似物的其他新功能。