Suppr超能文献

用于屈光状态和屈光手术的人眼眼部成分分析

Human eye ocular component analysis for refractive state and refractive surgery.

作者信息

Chang Chao-Kai, Lin Jui-Teng, Zhang Yong

机构信息

Nobel Eye Institute, Taipei 101, Taiwan, China.

New Vision Inc., Taipei 103, Taiwan, China.

出版信息

Int J Ophthalmol. 2017 Jul 18;10(7):1076-1080. doi: 10.18240/ijo.2017.07.09. eCollection 2017.

Abstract

AIM

To analyze the clinical factors influencing the human vision corrections the changing of ocular components of human eye in various applications; and to analyze refractive state a new effective axial length.

METHODS

An effective eye model was introduced by the ocular components of human eye including refractive indexes, surface radius (r1, r2, R1, R2) and thickness (t, T) of the cornea and lens, the anterior chamber depth (S1) and the vitreous length (S2). Gaussian optics was used to calculate the change rate of refractive error per unit amount of ocular components of a human eye (the rate function M). A new criterion of myopia was presented an effective axial length.

RESULTS

For typical corneal and lens power of 42 and 21.9 diopters, the rate function Mj (j=1 to 6) were calculated for a 1% change of r1, r2, R1, R2, t, T (in diopters) M1=+0.485, M2=-0.063, M3=+0.053, M4=+0.091, M5=+0.012, and M6=-0.021 diopters. For 1.0 mm increase of S1 and S2, the rate functions were M7=+1.35, and M8=-2.67 diopter/mm, respectively. These rate functions were used to analyze the clinical outcomes in various applications including laser keratomileusis surgery, corneal cross linking procedure, femtosecond laser surgery and scleral ablation for accommodation.

CONCLUSION

Using Gaussian optics, analytic formulas are presented for the change of refractive power due to various ocular parameter changes. These formulas provide useful clinical guidance in refractive surgery and other related procedures.

摘要

目的

分析影响人眼视力矫正的临床因素、人眼在各种应用中眼内成分的变化;并分析屈光状态与一种新的有效眼轴长度。

方法

通过人眼的眼内成分引入一个有效眼模型,包括角膜和晶状体的折射率、表面半径(r1、r2、R1、R2)和厚度(t、T)、前房深度(S1)和玻璃体长度(S2)。采用高斯光学计算人眼眼内成分每单位量的屈光不正变化率(速率函数M)。提出了一种基于有效眼轴长度的近视新标准。

结果

对于典型的角膜和晶状体屈光度42和21.9,计算r1、r2、R1、R2、t、T每变化1%时的速率函数Mj(j = 1至6)(单位为屈光度),M1 = +0.485,M2 = -0.063,M3 = +0.053,M4 = +0.091,M5 = +0.012,M6 = -0.021屈光度。对于S1和S2每增加1.0 mm,速率函数分别为M7 = +1.35和M8 = -2.67屈光度/毫米。这些速率函数用于分析各种应用中的临床结果,包括准分子激光原位角膜磨镶术、角膜交联手术、飞秒激光手术和巩膜消融调节术。

结论

利用高斯光学,给出了由于各种眼参数变化导致的屈光力变化的解析公式。这些公式在屈光手术和其他相关手术中提供了有用的临床指导。

相似文献

1
Human eye ocular component analysis for refractive state and refractive surgery.
Int J Ophthalmol. 2017 Jul 18;10(7):1076-1080. doi: 10.18240/ijo.2017.07.09. eCollection 2017.
2
Correlation analysis and multiple regression formulas of refractive errors and ocular components.
Int J Ophthalmol. 2019 May 18;12(5):858-861. doi: 10.18240/ijo.2019.05.26. eCollection 2019.
3
Intraocular lens power calculation after laser refractive surgery: corrective algorithm for corneal power estimation.
J Cataract Refract Surg. 2010 Jan;36(1):87-96. doi: 10.1016/j.jcrs.2009.07.011.
4
Axial growth and changes in lenticular and corneal power during emmetropization in infants.
Invest Ophthalmol Vis Sci. 2005 Sep;46(9):3074-80. doi: 10.1167/iovs.04-1040.
5
Corneal power after refractive surgery for myopia: contact lens method.
J Cataract Refract Surg. 2003 Jul;29(7):1397-411. doi: 10.1016/s0886-3350(02)02044-8.
6
On the ocular refractive components: the Reykjavik Eye Study.
Acta Ophthalmol Scand. 2007 Jun;85(4):361-6. doi: 10.1111/j.1600-0420.2006.00847.x. Epub 2007 Feb 7.
7
Analysis of refractive state ratios and the onset of myopia.
Ophthalmic Physiol Opt. 2006 Jan;26(1):97-105. doi: 10.1111/j.1475-1313.2005.00354.x.
8
Corneal topography and myopia. A cross-sectional study.
Invest Ophthalmol Vis Sci. 1997 Feb;38(2):311-20.
9
A biometric investigation of ocular components in amblyopia.
Ophthalmic Physiol Opt. 2008 Sep;28(5):429-40. doi: 10.1111/j.1475-1313.2008.00585.x.
10
Intraocular lens power calculation after myopic laser in situ keratomileusis: Estimating the corneal refractive power.
J Cataract Refract Surg. 2008 Jul;34(7):1070-6. doi: 10.1016/j.jcrs.2008.03.020.

引用本文的文献

1
Correlation analysis and multiple regression formulas of refractive errors and ocular components.
Int J Ophthalmol. 2019 May 18;12(5):858-861. doi: 10.18240/ijo.2019.05.26. eCollection 2019.

本文引用的文献

1
Corneal collagen crosslinking: a systematic review.
Ophthalmologica. 2014;232(1):10-27. doi: 10.1159/000357979. Epub 2014 Apr 17.
2
Optimization model for UV-riboflavin corneal cross-linking.
Invest Ophthalmol Vis Sci. 2012 Feb 16;53(2):762-9. doi: 10.1167/iovs.11-8059.
3
Biomechanical property analysis after corneal collagen cross-linking in relation to ultraviolet A irradiation time.
Graefes Arch Clin Exp Ophthalmol. 2011 Aug;249(8):1223-7. doi: 10.1007/s00417-011-1674-0. Epub 2011 Apr 15.
4
Analysis and applications of accommodative lenses for vision corrections.
J Biomed Opt. 2011 Jan-Feb;16(1):018002. doi: 10.1117/1.3528649.
5
Safety of UVA-riboflavin cross-linking of the cornea.
Cornea. 2007 May;26(4):385-9. doi: 10.1097/ICO.0b013e3180334f78.
6
Predicting the performance of accommodating intraocular lenses using ray tracing.
J Cataract Refract Surg. 2006 Jan;32(1):129-36. doi: 10.1016/j.jcrs.2005.07.047.
7
Analysis of refractive state ratios and the onset of myopia.
Ophthalmic Physiol Opt. 2006 Jan;26(1):97-105. doi: 10.1111/j.1475-1313.2005.00354.x.
8
In vitro dimensions and curvatures of human lenses.
Vision Res. 2006 Mar;46(6-7):1002-9. doi: 10.1016/j.visres.2005.10.019.
9
New formulas comparing the accommodation in human lens and intraocular lens.
J Refract Surg. 2005 Mar-Apr;21(2):200-1. doi: 10.3928/1081-597X-20050301-19.
10
Accommodation obtained per 1.0 mm forward movement of a posterior chamber intraocular lens.
J Cataract Refract Surg. 2003 Nov;29(11):2069-72. doi: 10.1016/s0886-3350(03)00257-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验