Stockwell Simon R, Mittnacht Sibylle
MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK.
Cancer Biology, UCL Cancer Institute, London, UK.
Methods Mol Biol. 2017;1636:133-161. doi: 10.1007/978-1-4939-7154-1_10.
High-content imaging connects the information-rich method of microscopy with the systematic objective principles of software-driven analysis. Suited to automation and, therefore, considerable scale-up of study size, this approach can deliver multiparametric data over cell populations or at the level of the individual cell and has found considerable utility in reverse genetic and pharmacological screens. Here we present a method to screen small interfering RNA (siRNA) libraries allowing subsequent observation of the impact of each knockdown on two interlinked, high-content, G1-/S-phase cell cycle transition assays related to cyclin-dependent kinase (CDK) 2 activity. We show how plasticity within the network governing the activity of this kinase can be detected by combining modifier siRNAs with a siRNA library. The method uses fluorescent immunostaining of a nuclear antigen, CyclinA, following cell fixation while also preserving the fluorescence of a stably expressed fluorescent protein-tagged reporter for CDK2 activity. We provide methodology for data extraction and handling including an R-script that converts the multidimensional data into four simple binary outcomes, on which a hit-mining strategy can be built. The workflow described can in principle be adopted to yield quantitative single-cell-resolved data and mining for outcomes relating to a broad range of other similar readouts and signaling contexts.
高内涵成像将信息丰富的显微镜方法与软件驱动分析的系统客观原理相结合。这种方法适用于自动化,因此能够显著扩大研究规模,可在细胞群体或单个细胞水平上提供多参数数据,并且在反向遗传学和药理学筛选中已发现其具有相当大的实用性。在此,我们展示一种筛选小干扰RNA(siRNA)文库的方法,该方法允许后续观察每个基因敲低对与细胞周期蛋白依赖性激酶(CDK)2活性相关的两个相互关联的高内涵G1/S期细胞周期转换检测的影响。我们展示了如何通过将修饰siRNA与siRNA文库相结合来检测调控该激酶活性的网络内的可塑性。该方法在细胞固定后对核抗原细胞周期蛋白A进行荧光免疫染色,同时还保留稳定表达的荧光蛋白标记的CDK2活性报告基因的荧光。我们提供了数据提取和处理的方法,包括一个R脚本,该脚本将多维数据转换为四个简单的二元结果,在此基础上可以构建命中挖掘策略。原则上,所描述的工作流程可用于产生定量的单细胞解析数据,并挖掘与广泛的其他类似读数和信号背景相关的结果。