Suppr超能文献

植物-真菌养分交换及宿主控制在外生菌根真菌竞争成功中的作用

Role of plant-fungal nutrient trading and host control in determining the competitive success of ectomycorrhizal fungi.

作者信息

Hortal Sara, Plett Krista Lynn, Plett Jonathan Michael, Cresswell Tom, Johansen Mathew, Pendall Elise, Anderson Ian Charles

机构信息

Western Sydney University, Hawkesbury Institute for the Environment, Penrith, NSW, Australia.

Australian Nuclear Science and Technology Organisation, Kirrawee DC, NSW, Australia.

出版信息

ISME J. 2017 Dec;11(12):2666-2676. doi: 10.1038/ismej.2017.116. Epub 2017 Jul 21.

Abstract

Multiple ectomycorrhizal fungi (EMF) compete to colonise the roots of a host plant, but it is not known whether their success is under plant or fungal control, or a combination of both. We assessed whether plants control EMF colonisation by preferentially allocating more carbon to more beneficial partners in terms of nitrogen supply or if other factors drive competitive success. We combined stable isotope labelling and RNA-sequencing approaches to characterise nutrient exchange between the plant host Eucalyptus grandis and three Pisolithus isolates when growing alone and when competing either indirectly (with a physical barrier) or directly. Overall, we found that nitrogen provision to the plant does not explain the amount of carbon that an isolate receives nor the number of roots that it colonises. Differences in nutrient exchange among isolates were related to differences in expression of key fungal and plant nitrogen and carbon transporter genes. When given a choice of partners, the plant was able to limit colonisation by the least cooperative isolate. This was not explained by a reduction in allocated carbon. Instead, our results suggest that partner choice in EMF could operate through the upregulation of defence-related genes against those fungi providing fewer nutrients.

摘要

多种外生菌根真菌(EMF)竞相定殖于宿主植物的根系,但它们成功定殖是受植物控制、真菌控制还是两者共同控制尚不清楚。我们评估了植物是否通过优先向在氮供应方面更有益的伙伴分配更多碳来控制EMF定殖,或者其他因素是否驱动竞争成功。我们结合了稳定同位素标记和RNA测序方法,以表征植物宿主巨桉与三种豆马勃分离株单独生长时以及间接竞争(有物理屏障)或直接竞争时的养分交换情况。总体而言,我们发现向植物提供的氮并不能解释一个分离株获得的碳量或其定殖的根的数量。分离株之间养分交换的差异与关键真菌和植物氮及碳转运蛋白基因的表达差异有关。当有伙伴可供选择时,植物能够限制最不合作的分离株的定殖。这并非由分配碳的减少所解释。相反,我们的结果表明,EMF中的伙伴选择可能通过针对提供较少养分的真菌上调防御相关基因来实现。

相似文献

1
Role of plant-fungal nutrient trading and host control in determining the competitive success of ectomycorrhizal fungi.
ISME J. 2017 Dec;11(12):2666-2676. doi: 10.1038/ismej.2017.116. Epub 2017 Jul 21.
4
Plant species differ in early seedling growth and tissue nutrient responses to arbuscular and ectomycorrhizal fungi.
Mycorrhiza. 2017 Apr;27(3):211-223. doi: 10.1007/s00572-016-0744-x. Epub 2016 Nov 12.
6
[Advances in mechanisms of nutrient exchange between mycorrhizal fungi and host plants].
Ying Yong Sheng Tai Xue Bao. 2019 Oct;30(10):3596-3604. doi: 10.13287/j.1001-9332.201910.034.
7
Understanding the Arbuscule at the Heart of Endomycorrhizal Symbioses in Plants.
Curr Biol. 2017 Sep 11;27(17):R952-R963. doi: 10.1016/j.cub.2017.06.042.
9
Arbuscular mycorrhiza: the mother of plant root endosymbioses.
Nat Rev Microbiol. 2008 Oct;6(10):763-75. doi: 10.1038/nrmicro1987.
10
Does resource exchange in ectomycorrhizal symbiosis vary with competitive context and nitrogen addition?
New Phytol. 2022 Feb;233(3):1331-1344. doi: 10.1111/nph.17871. Epub 2021 Dec 7.

引用本文的文献

1
Genetic variation among progeny shapes symbiosis in a basidiomycete with poplar.
New Phytol. 2025 Oct;248(1):157-177. doi: 10.1111/nph.70395. Epub 2025 Aug 7.
3
The Mechanism of Ammonia-Assimilating Bacteria Promoting the Growth of Oyster Mushrooms ().
J Fungi (Basel). 2025 Feb 9;11(2):130. doi: 10.3390/jof11020130.
4
Ammonia-Assimilating Bacteria Promote Wheat () Growth and Nitrogen Utilization.
Microorganisms. 2024 Dec 30;13(1):43. doi: 10.3390/microorganisms13010043.
5
Mycorrhizal symbiosis and the nitrogen nutrition of forest trees.
Appl Microbiol Biotechnol. 2024 Sep 9;108(1):461. doi: 10.1007/s00253-024-13298-w.
6
Extreme specificity in obligate mutualism-A role for competition?
Ecol Evol. 2024 Jun 21;14(6):e11628. doi: 10.1002/ece3.11628. eCollection 2024 Jun.
7
Community composition of phytopathogenic fungi significantly influences ectomycorrhizal fungal communities during subtropical forest succession.
Appl Microbiol Biotechnol. 2024 Dec;108(1):99. doi: 10.1007/s00253-023-12992-5. Epub 2024 Jan 10.
8
Tropical tree ectomycorrhiza are distributed independently of soil nutrients.
Nat Ecol Evol. 2024 Mar;8(3):400-410. doi: 10.1038/s41559-023-02298-0. Epub 2024 Jan 10.
9
Mycorrhizal C/N ratio determines plant-derived carbon and nitrogen allocation to symbiosis.
Commun Biol. 2023 Dec 5;6(1):1230. doi: 10.1038/s42003-023-05591-7.
10
Fungal Fight Club: phylogeny and growth rate predict competitive outcomes among ectomycorrhizal fungi.
FEMS Microbiol Ecol. 2023 Sep 19;99(10). doi: 10.1093/femsec/fiad108.

本文引用的文献

2
Take a Trip Through the Plant and Fungal Transportome of Mycorrhiza.
Trends Plant Sci. 2016 Nov;21(11):937-950. doi: 10.1016/j.tplants.2016.07.010. Epub 2016 Aug 8.
3
Regulation of resource exchange in the arbuscular mycorrhizal symbiosis.
Nat Plants. 2015 Nov 3;1:15159. doi: 10.1038/nplants.2015.159.
6
Options of partners improve carbon for phosphorus trade in the arbuscular mycorrhizal mutualism.
Ecol Lett. 2016 Jun;19(6):648-56. doi: 10.1111/ele.12601. Epub 2016 Apr 13.
9
Forests trapped in nitrogen limitation--an ecological market perspective on ectomycorrhizal symbiosis.
New Phytol. 2014 Jul;203(2):657-666. doi: 10.1111/nph.12840. Epub 2014 May 14.
10
Carbon and nitrogen fluxes between beech and their ectomycorrhizal assemblage.
Mycorrhiza. 2014 Nov;24(8):645-50. doi: 10.1007/s00572-014-0581-8. Epub 2014 Apr 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验