Yadav Pradeep K, Antonyraj Christian B, Basheer Ahamed Syed Ibrahim, Srinivas Sistla
Centre for Bioinformatics, Pondicherry University, Pondicherry, India.
GE Healthcare Life Sciences, John F Welch Technology Centre, EPIP, Bengaluru, India.
PLoS One. 2017 Jul 21;12(7):e0181216. doi: 10.1371/journal.pone.0181216. eCollection 2017.
Blood coagulation factor V (FV) is activated either by Factor X or thrombin, cleaving at three different sites viz., Site I (Arg709-Ser710), site II (Arg1018-Thr1019), and site III (Arg1545-Ser1546). Russell's viper venom factor V activator (RVV-V) is a thrombin-like serine proteinase that activates FV with selective, single cleavage at site III. A long lasting effort is being pending in understanding the 'selective' binding specificity of the RVV-V towards site III. Here, we present the binding kinetic study of RVV-V with two designed peptides corresponding to the regions from site I (Gln699-Asn713) and site II (1008Lys-Pro1022), respectively, that include 15 amino acids. Our investigation for justifying the binding efficacy and kinetics of peptides includes SPR method, protein-peptide docking, molecular dynamics simulation, and principal component analysis (PCA). Surprisingly, the SPR experiment disclosed that the Peptide II showed a lower binding affinity with KD of 2.775 mM while the Peptide I showed none. Docking and simulation of both the peptides with RVV-V engaged either rooted or shallow binding for Peptide II and Peptide I respectively. The peptide binding resulted in global conformational changes in the native fold of RVV-V, whereas the similar studies for thrombin failed to make major changes in the native fold. In support, the PCA analysis for RVV-V showed the dislocation of catalytic triad upon binding both the peptides. Hence, RVV-V, a serine protease, is incompetent in cleaving these two sites. This study suggests a transition in RVV-V from the native rigid to the distorted flexible structure and paves a way to design a new peptide substrate/inhibitor.
血液凝固因子V(FV)可被因子X或凝血酶激活,在三个不同位点进行切割,即位点I(精氨酸709 - 丝氨酸710)、位点II(精氨酸1018 - 苏氨酸1019)和位点III(精氨酸1545 - 丝氨酸1546)。罗素蝰蛇毒因子V激活剂(RVV - V)是一种类似凝血酶的丝氨酸蛋白酶,它通过在位点III进行选择性单一切割来激活FV。在理解RVV - V对位点III的“选择性”结合特异性方面,长期以来一直存在努力。在此,我们展示了RVV - V与分别对应于位点I(谷氨酰胺699 - 天冬酰胺713)和位点II(赖氨酸1008 - 脯氨酸1022)区域的两种设计肽的结合动力学研究,这两种肽各包含15个氨基酸。我们对肽的结合效力和动力学进行验证的研究包括表面等离子体共振(SPR)方法、蛋白质 - 肽对接、分子动力学模拟和主成分分析(PCA)。令人惊讶的是,SPR实验表明肽II的结合亲和力较低,解离常数(KD)为2.775 mM,而肽I则没有显示出结合。肽II和肽I与RVV - V的对接和模拟分别显示肽II为深度结合,肽I为浅结合。肽的结合导致RVV - V天然折叠结构发生全局构象变化,而对凝血酶的类似研究未能使天然折叠结构发生重大变化。作为支持,对RVV - V的PCA分析表明,在结合这两种肽后催化三联体发生了位移。因此,作为丝氨酸蛋白酶的RVV - V无法切割这两个位点。这项研究表明RVV - V从天然的刚性结构转变为扭曲的柔性结构,并为设计新的肽底物/抑制剂铺平了道路。