Walter Schottky Institut, Physik Department, and Center for Nanotechnology and Nanomaterials, Technical University of Munich , Garching, 85748, Germany.
Department of Materials Science and Engineering, Northwestern University , Evanston, Illinois 60208, United States.
Nano Lett. 2017 Aug 9;17(8):4886-4893. doi: 10.1021/acs.nanolett.7b01732. Epub 2017 Jul 26.
Modulation-doped III-V semiconductor nanowire (NW) heterostructures have recently emerged as promising candidates to host high-mobility electron channels for future high-frequency, low-energy transistor technologies. The one-dimensional geometry of NWs also makes them attractive for studying quantum confinement effects. Here, we report correlated investigations into the discrete electronic sub-band structure of confined electrons in the channel of Si δ-doped GaAs-GaAs/AlAs core-superlattice NW heterostructures and the associated signatures in low-temperature transport. On the basis of accurate structural and dopant analysis using scanning transmission electron microscopy and atom probe tomography, we calculated the sub-band structure of electrons confined in the NW core and employ a labeling system inspired by atomic orbital notation. Electron transport measurements on top-gated NW transistors at cryogenic temperatures revealed signatures consistent with the depopulation of the quasi-one-dimensional sub-bands, as well as confinement in zero-dimensional-like states due to an impurity-defined background disorder potential. These findings are instructive toward reaching the ballistic transport regime in GaAs-AlGaAs based NW systems.
调制掺杂 III-V 半导体纳米线(NW)异质结构最近成为承载高迁移率电子沟道的有前途的候选者,用于未来的高频、低能量晶体管技术。NW 的一维几何形状也使它们成为研究量子限制效应的理想选择。在这里,我们报告了对 Si δ 掺杂 GaAs-GaAs/AlAs 核-超晶格 NW 异质结构中沟道中受限电子的离散电子子带结构以及低温输运中的相关特征的相关研究。基于使用扫描透射电子显微镜和原子探针断层扫描进行的精确结构和掺杂分析,我们计算了 NW 核心中受限电子的子带结构,并采用了受原子轨道符号启发的标记系统。在低温下对顶栅 NW 晶体管进行的电子输运测量显示出与准一维子带耗尽以及由于杂质定义的背景无序势引起的零维状限制态相一致的特征。这些发现对于在基于 GaAs-AlGaAs 的 NW 系统中达到弹道输运状态具有指导意义。