Balaghi Leila, Shan Si, Fotev Ivan, Moebus Finn, Rana Rakesh, Venanzi Tommaso, Hübner René, Mikolajick Thomas, Schneider Harald, Helm Manfred, Pashkin Alexej, Dimakis Emmanouil
Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany.
Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01062, Dresden, Germany.
Nat Commun. 2021 Nov 17;12(1):6642. doi: 10.1038/s41467-021-27006-z.
Transistor concepts based on semiconductor nanowires promise high performance, lower energy consumption and better integrability in various platforms in nanoscale dimensions. Concerning the intrinsic transport properties of electrons in nanowires, relatively high mobility values that approach those in bulk crystals have been obtained only in core/shell heterostructures, where electrons are spatially confined inside the core. Here, it is demonstrated that the strain in lattice-mismatched core/shell nanowires can affect the effective mass of electrons in a way that boosts their mobility to distinct levels. Specifically, electrons inside the hydrostatically tensile-strained gallium arsenide core of nanowires with a thick indium aluminium arsenide shell exhibit mobility values 30-50 % higher than in equivalent unstrained nanowires or bulk crystals, as measured at room temperature. With such an enhancement of electron mobility, strained gallium arsenide nanowires emerge as a unique means for the advancement of transistor technology.
基于半导体纳米线的晶体管概念有望实现高性能、低能耗,并在纳米尺度的各种平台上具有更好的集成性。关于纳米线中电子的本征输运特性,只有在核/壳异质结构中才能获得接近体晶体中电子迁移率的相对较高的值,在这种结构中电子在空间上被限制在核内。在此,研究表明晶格失配的核/壳纳米线中的应变能够以某种方式影响电子的有效质量,从而将其迁移率提高到不同水平。具体而言,在室温下测量时,具有厚砷化铟铝壳的纳米线中处于静水拉伸应变的砷化镓核内的电子迁移率比等效的无应变纳米线或体晶体中的电子迁移率高30%至50%。随着电子迁移率的这种提高,应变砷化镓纳米线成为推动晶体管技术发展的独特手段。