Serna Naroa, Sánchez-García Laura, Sánchez-Chardi Alejandro, Unzueta Ugutz, Roldán Mónica, Mangues Ramón, Vázquez Esther, Villaverde Antonio
Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain.
Servei de Microscòpia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain.
Acta Biomater. 2017 Sep 15;60:256-263. doi: 10.1016/j.actbio.2017.07.027. Epub 2017 Jul 19.
The emergence of bacterial antibiotic resistances is a serious concern in human and animal health. In this context, naturally occurring cationic antimicrobial peptides (AMPs) might play a main role in a next generation of drugs against bacterial infections. Taking an innovative approach to design self-organizing functional proteins, we have generated here protein-only nanoparticles with intrinsic AMP microbicide activity. Using a recombinant version of the GWH1 antimicrobial peptide as building block, these materials show a wide antibacterial activity spectrum in absence of detectable toxicity on mammalian cells. The GWH1-based nanoparticles combine clinically appealing properties of nanoscale materials with full biocompatibility, structural and functional plasticity and biological efficacy exhibited by proteins. Because of the largely implemented biological fabrication of recombinant protein drugs, the protein-based platform presented here represents a novel and scalable strategy in antimicrobial drug design, that by solving some of the limitations of AMPs offers a promising alternative to conventional antibiotics.
The low molecular weight antimicrobial peptide GWH1 has been engineered to oligomerize as self-assembling protein-only nanoparticles of around 50nm. In this form, the peptide exhibits potent and broad antibacterial activities against both Gram-positive and Gram-negative bacteria, without any harmful effect over mammalian cells. As a solid proof-of-concept, this finding strongly supports the design and biofabrication of nanoscale antimicrobial materials with in-built functionalities. The protein-based homogeneous composition offer advantages over alternative materials explored as antimicrobial agents, regarding biocompatibility, biodegradability and environmental suitability. Beyond the described prototype, this transversal engineering concept has wide applicability in the design of novel nanomedicines for advanced treatments of bacterial infections.
细菌抗生素耐药性的出现是人类和动物健康领域的一个严重问题。在这种背景下,天然存在的阳离子抗菌肽(AMPs)可能在下一代抗细菌感染药物中发挥主要作用。我们采用创新方法设计自组装功能蛋白,在此生成了具有内在AMP杀微生物活性的纯蛋白纳米颗粒。以重组版GWH1抗菌肽作为构建模块,这些材料在对哺乳动物细胞无明显毒性的情况下展现出广泛的抗菌活性谱。基于GWH1的纳米颗粒将纳米级材料具有临床吸引力的特性与蛋白质所展现的完全生物相容性、结构和功能可塑性以及生物学功效相结合。由于重组蛋白药物在很大程度上实现了生物制造,这里展示的基于蛋白质的平台代表了抗菌药物设计中的一种新型且可扩展的策略,该策略通过解决AMPs的一些局限性,为传统抗生素提供了一种有前景的替代方案。
低分子量抗菌肽GWH1已被设计成寡聚化,形成约50纳米的仅由蛋白质自组装而成的纳米颗粒。以这种形式,该肽对革兰氏阳性菌和革兰氏阴性菌均表现出强大且广泛的抗菌活性,对哺乳动物细胞没有任何有害影响。作为一个确凿的概念验证,这一发现有力地支持了具有内在功能的纳米级抗菌材料的设计和生物制造。基于蛋白质的均匀组成在生物相容性、生物降解性和环境适应性方面比作为抗菌剂探索的其他材料具有优势。除了所描述的原型,这种横向工程概念在设计用于细菌感染高级治疗的新型纳米药物方面具有广泛的适用性。