Miri Andrew, Warriner Claire L, Seely Jeffrey S, Elsayed Gamaleldin F, Cunningham John P, Churchland Mark M, Jessell Thomas M
Department of Neuroscience, Columbia University, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Kavli Institute of Brain Science, Columbia University, New York, NY 10032, USA; Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10032, USA.
Department of Neuroscience, Columbia University, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Kavli Institute of Brain Science, Columbia University, New York, NY 10032, USA; Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10032, USA.
Neuron. 2017 Aug 2;95(3):683-696.e11. doi: 10.1016/j.neuron.2017.06.042. Epub 2017 Jul 20.
Blocking motor cortical output with lesions or pharmacological inactivation has identified movements that require motor cortex. Yet, when and how motor cortex influences muscle activity during movement execution remains unresolved. We addressed this ambiguity using measurement and perturbation of motor cortical activity together with electromyography in mice during two forelimb movements that differ in their requirement for cortical involvement. Rapid optogenetic silencing and electrical stimulation indicated that short-latency pathways linking motor cortex with spinal motor neurons are selectively activated during one behavior. Analysis of motor cortical activity revealed a dramatic change between behaviors in the coordination of firing patterns across neurons that could account for this differential influence. Thus, our results suggest that changes in motor cortical output patterns enable a behaviorally selective engagement of short-latency effector pathways. The model of motor cortical influence implied by our findings helps reconcile previous observations on the function of motor cortex.
通过损伤或药物失活来阻断运动皮层输出,已确定了需要运动皮层参与的运动。然而,在运动执行过程中,运动皮层何时以及如何影响肌肉活动仍未得到解决。我们在小鼠进行两种对皮层参与需求不同的前肢运动时,结合运动皮层活动的测量与扰动以及肌电图,解决了这一模糊问题。快速光遗传学沉默和电刺激表明,在一种行为过程中,连接运动皮层与脊髓运动神经元的短潜伏期通路被选择性激活。对运动皮层活动的分析揭示了不同行为之间神经元放电模式协调性的巨大变化,这可以解释这种差异影响。因此,我们的结果表明,运动皮层输出模式的变化使得短潜伏期效应通路能够进行行为选择性参与。我们的发现所暗示的运动皮层影响模型有助于调和先前关于运动皮层功能的观察结果。